DISCLAIMER

This presentation contains certain forward-looking statements, including but not limited to, the statements and expectations contained in the “Financial Outlook” section of this presentation. Statements herein, other than statements of historical fact, regarding our future results of operations, financial condition, cash flows, business strategy, plans and future objectives are forward-looking statements. Words such as “targets”, “believe”, “expect”, “aim”, “intend”, “plan”, “seek”, “will”, “may”, “should” “anticipate”, “continue”, “predict” or variations of these words, as well as other statements regarding matters that are not historical fact or regarding future events or prospects, constitute forward-looking statements.

Ørsted have based these forward-looking statements on its current views with respect to future events and financial performance. These views involve a number of risks and uncertainties, which could cause actual results to differ materially from those predicted in the forward-looking statements and from the past performance of Ørsted. Although, Ørsted believes that the estimates and projections reflected in the forward-looking statements are reasonable, they may prove materially incorrect and actual results may materially differ due to a variety of factors, including, but not limited to market risks, development of construction and production assets, regulatory risks, operation of offshore and onshore wind farms, cost of electricity for offshore and onshore wind power. As a result you should not rely on these forward-looking statements. Please also refer to the overview of risk factors in “Risk and Management” on p. 47 of the Annual Report 2017, available at www.Ørsted.com.

Unless required by law, Ørsted is under no duty and undertakes no obligation to update or revise any forward-looking statement after the distribution of this presentation, whether as a result of new information future events or otherwise.
<table>
<thead>
<tr>
<th>Time</th>
<th>Agenda</th>
<th>Speaker</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00-09:05</td>
<td>Welcome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:05-10:10</td>
<td>Update on Strategy & Capital Allocation</td>
<td>Henrik Poulsen</td>
<td>5</td>
</tr>
<tr>
<td>10:10-10:35</td>
<td>US Acquisition – Deepwater Wind</td>
<td>Thomas Brostrøm & Jeff Grybowski</td>
<td>29</td>
</tr>
<tr>
<td>10:35-11:00</td>
<td>US Acquisition – Lincoln Clean Energy</td>
<td>Ole Kjems Sørensen & Declan Flanagan</td>
<td>41</td>
</tr>
<tr>
<td>11:10-15:00</td>
<td>Breakout sessions - 40 minutes each, with a 10-minute break in between</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Global Offshore Wind Markets</td>
<td>Martin Neubert & Thyge Boserup</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Offshore : EPC Excellence</td>
<td>Anders Lindberg</td>
<td>75</td>
</tr>
<tr>
<td>12:40-13:30</td>
<td>Lunch</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Offshore : O&M Excellence</td>
<td>Mark Porter</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>Customer Solutions</td>
<td>Morten Hultberg Buchgreitz</td>
<td>107</td>
</tr>
<tr>
<td>15:10-16:00</td>
<td>Financials</td>
<td>Marianne Wiinholt</td>
<td>123</td>
</tr>
<tr>
<td>16:00-16:30</td>
<td>Wrap-up and final Q&A</td>
<td>Henrik Poulsen and the Executive Committee</td>
<td>145</td>
</tr>
</tbody>
</table>
Update on Strategy & Capital Allocation
Henrik Poulsen
CEO and President

Born: 1967
Education: M.Sc., Finance and Accounting, Aarhus School of Business, Denmark, 1994

2012 – Ørsted A/S
CEO and President

2008 – 2012 TDC A/S
CEO and President

Operating Partner

1999 – 2006 LEGO
Executive Vice President, Markets and Products (2005-06)
Regional Managing Director, Europe and Asia (2004-05)
Senior Vice President, Global Innovation and Marketing (2002-03)
Senior Vice President, Global Segment 8+ (2000-02)
Vice President, Business Development (1999-2000)

Senior Engagement Manager
Love your home
Let’s create a world that runs entirely on green energy
We have transformed Ørsted to a green energy company

Capital employed

<table>
<thead>
<tr>
<th>Year</th>
<th>DKKbn</th>
<th>Renewables</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>57</td>
<td>16%</td>
</tr>
<tr>
<td>2017</td>
<td>63</td>
<td>94%</td>
</tr>
</tbody>
</table>

Operating profit (EBITDA)

<table>
<thead>
<tr>
<th>Year</th>
<th>DKKbn</th>
<th>Remaining business</th>
<th>Renewables</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>9.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017(^1)</td>
<td>12.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018E</td>
<td>13.14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CO2-emissions

<table>
<thead>
<tr>
<th>Year</th>
<th>g/kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>452</td>
</tr>
<tr>
<td>2017</td>
<td>151</td>
</tr>
</tbody>
</table>

\(^1\) Excludes Distribution and B2C businesses, currently being divested and EBITDA contribution from new partnerships
Vision opens up a massive market opportunity in renewable energy

Global renewable capacity by geography
GW, installed
- Latin America
- Rest of APAC
- India
- North America
- Europe
- China

Global renewables capacity by technology
GW, installed
- Offshore wind
- Small-scale PV
- Biomass
- Utility-scale PV
- Storage
- Onshore wind

2018
- Offshore wind: 1,153
- Biomass: 3,678
- Small-scale PV: 210 GW/year
- Utility-scale PV: 210 GW/year
- Storage: 210 GW/year
- Onshore wind: 210 GW/year

2030
- Offshore wind: 1,153
- Biomass: 3,678
- Small-scale PV: 210 GW/year
- Utility-scale PV: 210 GW/year
- Storage: 210 GW/year
- Onshore wind: 210 GW/year

Growth CAGR: 10%

Note: Excludes ‘Other’ (solar thermal and geothermal) accounting for less than 2%
Global installed renewables\(^1\) top 8

<table>
<thead>
<tr>
<th>Company</th>
<th>Installed and under construction(^2) capacity, GW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iberdrola</td>
<td>18.1</td>
</tr>
<tr>
<td>NextEra</td>
<td>17.7</td>
</tr>
<tr>
<td>Enel</td>
<td>14.9</td>
</tr>
<tr>
<td>RWE</td>
<td>13.3</td>
</tr>
<tr>
<td>Ørsted</td>
<td>16.6</td>
</tr>
<tr>
<td>Berkshire Hathaway</td>
<td>10.8</td>
</tr>
<tr>
<td>EDF</td>
<td>10.6</td>
</tr>
<tr>
<td>EDP</td>
<td>9.9</td>
</tr>
</tbody>
</table>

Note: Excludes Chinese players. Ørsted capacity based on constructed capacity. Source: BNEF Energy Asset Database as of November 20, 2018.

1. Includes onshore wind, offshore wind, solar PV, solar CSP, biomass, geothermal and marine generation
2. Includes projects defined as ‘Under construction’ and ‘Finance secured’. Capacity allocation based on the ownership stake that the organisation holds (where ownership stakes are not disclosed, credit is pro-rated equally amongst all owners)
3. Includes geothermal and wave energy
4. Includes offshore wind projects Changhua 1&2a, Changhua 2b&4, German Cluster 1, Gode Wind 3&4, Skipjack, Southfork, Revolution Wind, and onshore wind projects Sage Draw, Plum Creek, and solar PV project Permian Solar

Ørsted is strongly positioned to tap into long-term growth
Ørsted’s strategic playing field

Renewables generation

- Offshore wind
- Onshore wind
- Solar PV
- Bioenergy

Storage

- Electricity storage
- Power-to-gas

T&D

- Electricity transmission and distribution

Consumption

- Wholesale
- Corporate customers
- Residential customers
- Electric heating
- Electric vehicles

Legend:
- Invest to grow
- Explore potential
- Exit
- No presence
Portfolio changes support main focus on renewables generation

Entering Ørsted portfolio

- Lincoln Clean Energy
 - Transaction closed
- Deepwater Wind
 - Transaction closed

Exiting Ørsted portfolio

- Distribution and B2C Customer businesses
 - Transaction expected signed in H1 2019
- Oil and gas pipeline infrastructure
 - Transactions expected signed in 2019
Strategic growth platform

<table>
<thead>
<tr>
<th></th>
<th>Europe</th>
<th>Americas</th>
<th>Asia</th>
<th>Estimated CAPEX allocation 2019-2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offshore</td>
<td>Global leader in offshore wind</td>
<td>Global leader in offshore wind</td>
<td>Global leader in offshore wind</td>
<td>75-85%</td>
</tr>
<tr>
<td>– Wind</td>
<td>– Strategic core</td>
<td>– Strategic core</td>
<td>– Strategic core</td>
<td></td>
</tr>
<tr>
<td>– Transmission</td>
<td>– Growth and value creation</td>
<td>– Growth and value creation</td>
<td>– Growth and value creation</td>
<td></td>
</tr>
<tr>
<td>– Storage</td>
<td>– Scale</td>
<td>– Scale</td>
<td>– Scale</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Keep pioneering and innovating</td>
<td></td>
<td>– Keep pioneering and innovating</td>
<td></td>
</tr>
<tr>
<td>Onshore</td>
<td>?</td>
<td>Leading US renewable company</td>
<td>Leading US renewable company</td>
<td>15-20%</td>
</tr>
<tr>
<td>– Wind</td>
<td></td>
<td>– Strategic diversification</td>
<td>– Strategic diversification</td>
<td></td>
</tr>
<tr>
<td>– Solar PV</td>
<td></td>
<td>– Scale</td>
<td>– Scale</td>
<td></td>
</tr>
<tr>
<td>– Storage</td>
<td></td>
<td>– Technology integration</td>
<td>– Technology integration</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>– New value-creating growth platform</td>
<td>– New value-creating growth platform</td>
<td></td>
</tr>
<tr>
<td>Bioenergy</td>
<td>Explore growth and value creation potential of Bioenergy</td>
<td></td>
<td>Explore growth and value creation potential of Bioenergy</td>
<td>0-5%</td>
</tr>
<tr>
<td>– Biomass</td>
<td></td>
<td></td>
<td>– Risk management</td>
<td></td>
</tr>
<tr>
<td>– Renescience</td>
<td></td>
<td></td>
<td>– Incremental value creation</td>
<td></td>
</tr>
<tr>
<td>– Biogas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Customer Solutions</td>
<td>– Route-to-market for Ørsted product portfolio</td>
<td></td>
<td>– Route-to-market for Ørsted product portfolio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Risk management</td>
<td></td>
<td>– Risk management</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Incremental value creation</td>
<td></td>
<td>– Incremental value creation</td>
<td></td>
</tr>
</tbody>
</table>
Global offshore wind capacity

<table>
<thead>
<tr>
<th>Company</th>
<th>Constructed</th>
<th>Under Construction</th>
<th>Awarded</th>
<th>Share of capacity constructed and under construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ørsted</td>
<td>12.8</td>
<td>3.8</td>
<td>3.4</td>
<td>5.6</td>
</tr>
<tr>
<td>RWE</td>
<td>5.6</td>
<td>3.9</td>
<td>0.9</td>
<td>0.3</td>
</tr>
<tr>
<td>Vattenfall</td>
<td>3.5</td>
<td>1.4</td>
<td>0.8</td>
<td>1.4</td>
</tr>
<tr>
<td>Iberdrola</td>
<td>2.0</td>
<td>0.4</td>
<td>0.7</td>
<td>1.4</td>
</tr>
<tr>
<td>EnBW</td>
<td>1.8</td>
<td>0.3</td>
<td>0.6</td>
<td>0.3</td>
</tr>
<tr>
<td>Northland Power</td>
<td>1.4</td>
<td>0.8</td>
<td>0.6</td>
<td>0.3</td>
</tr>
<tr>
<td>Equinor</td>
<td>1.8</td>
<td>1.1</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>CIP</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSE</td>
<td>0.6</td>
<td>0.3</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>Shell</td>
<td>0.5</td>
<td>0.1</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>

Note: Awarded includes project capacity secured through auctions and beauty contests since 2015, where FID has not yet been taken.

1. Includes Deepwater Wind
2. RWE capacity based on combined Innogy and E.ON offshore wind portfolio
Ørsted’s competitive position in offshore wind has proven its resilience

Offshore wind capacity secured in competitive processes since 2015 (MW)

- Ørsted: 5,099 MW
- Vattenfall: 2,102 MW
- Iberdrola: 1,600 MW
- RWE: 1,185 MW
- WPD: 1,058 MW
- Northland Power: 1,044 MW
- CIP: 1,000 MW
- EDP: 950 MW
- EnBW: 900 MW
- Shell / Eneco / Van Oord: 731 MW

Deepwater Wind
Strong execution track-record in offshore wind

Unlevered project IRR development since FID

Percentage points

<table>
<thead>
<tr>
<th></th>
<th>In operation</th>
<th>Under construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driven by FX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1%</td>
<td>0.6%</td>
<td>3.8%</td>
</tr>
<tr>
<td>2.5%</td>
<td>1.1%</td>
<td>-0.8%</td>
</tr>
<tr>
<td>3.6%</td>
<td>0.1%</td>
<td></td>
</tr>
<tr>
<td>2.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Flag icons represent different countries:
- UK
- Germany
- Denmark
- Netherlands

The chart illustrates the percentage points of Unlevered project IRR development since FID for projects in operation and under construction.
Significant value creation from offshore wind projects secured in competitive processes

Wind farms secured in competitive processes

- Borssele 1&2
- Hornsea 2
- German Cluster 1
- Gode Wind 3&4
- Greater Changhua 1&2a
- Greater Changhua 2b&4
- Revolution Wind

Average unlevered lifecycle IRR on wind farms secured in competitive processes

7.5-8.5%

Lifecycle IRR includes:
- All development expenses
- Fully allocated overhead
- Deepwater purchase price allocated to projects

1. Based on capacity-weighted average, current currency and market price assumptions, and on-time, on-budget construction
Green growth investments towards 2025

Estimated gross investments, 2019-2025

DKKbn

- Committed capital spend without continued European farm-downs: 40-45
- 3.8GW awarded offshore wind
- Offshore wind pipeline
- Onshore
- Bioenergy + Customer Solutions
- Expected growth capital spend: ~200
We extend our commitment to shareholder remuneration

Dividend policy

Paid dividend per share, DKK

- **2017**: 6.0
- **2018**: 9.0
- **2020**: Current dividend horizon
- **2025**: New dividend horizon

High single digit annual growth in dividend
Current financial headroom will be utilized to fuel green growth

Credit metric

FFO/NIBD

1. Net debt (incl. hybrid capital) to enterprise value
2. Based on most constraining rating agency credit metric

Current financial headroom will be consumed by build-out of offshore and onshore wind post acquisitions of Lincoln Clean Energy and Deepwater Wind

Rating requirement: 30%

Debt ratio\(^1\) based on market values

~25%

Capital allocation priorities:

- Maintain existing credit rating of BBB+/Baa1
- Honour extended dividend commitment
- Invest in value-creating green growth
- Return potential capital surplus to shareholders

Debt ratio based on market values

~25%

Current debt ratio

5-10%

Expected debt ratio in early 2020’s\(^2\)

\(^1\) Net debt (incl. hybrid capital) to enterprise value

\(^2\) Based on most constraining rating agency credit metric
Expected average return on capital employed of ~10% towards 2025

ROCE

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>~12-14</td>
<td>Current guidance (2018-2023)</td>
</tr>
<tr>
<td>~13</td>
<td>Current estimate (2018-2023)</td>
</tr>
<tr>
<td>~13</td>
<td>Effect of excluding 2018 with Hornsea 1 farm-down, and no further European farms-downs</td>
</tr>
<tr>
<td>~10%</td>
<td>Acquisition of Deepwater Wind and build-out pipeline</td>
</tr>
<tr>
<td>~10%</td>
<td>Updated guidance (2019-2025)</td>
</tr>
</tbody>
</table>
Profit from operating wind farms expected to grow by an average ~20% towards 2023

EBITDA from wind farms (offshore + onshore) in operation

DKKbn

2017-2023 CAGR: ~20%

Note: Assumes no European farm-downs post Hornsea 1 and COD of Borssele 1 & 2 in Q4 2020/Q1 2021 and of Hornsea 2 in 2022.
Assumes farm-down of Changhua 1 & 2a. Assumes today’s currency and market prices, and on-time, on-budget construction 2017-2023 based on linear 20% CAGR projection as an illustrative growth pattern. Will in reality not be linear.
Installed renewables capacity

GW

Note: 2020 includes Borssele 1&2 capacity, COD expected in Q4 2020/Q1 2021
1. Includes onshore wind, offshore wind, solar PV, storage and biomass

Green growth ambition for 2030

- Offshore wind
- Onshore wind
- Bioenergy
- Renewables

Volume growth not an objective in itself – focus is on value creation

2010: 2 GW
2020: 10 GW
2030: +30 GW
Green share of power generation ~99% in 2025, approximating zero emissions

Share of green power and heat

%

<table>
<thead>
<tr>
<th>Year</th>
<th>Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>17</td>
</tr>
<tr>
<td>2017</td>
<td>64</td>
</tr>
<tr>
<td>2020</td>
<td>80</td>
</tr>
<tr>
<td>2023</td>
<td>95</td>
</tr>
<tr>
<td>2025</td>
<td>99</td>
</tr>
</tbody>
</table>

Global energy sector emission target to stay below 2-degree global warming

Ørsted CO₂ emissions
New strategic estimates towards 2025

<table>
<thead>
<tr>
<th>Metric</th>
<th>Strategic estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total CAPEX spend, 2019-2025</td>
<td>DKK 200bn</td>
</tr>
<tr>
<td>CAPEX allocation split, 2019-2025</td>
<td></td>
</tr>
<tr>
<td>– Offshore</td>
<td>75-85%</td>
</tr>
<tr>
<td>– Onshore</td>
<td>15-20%</td>
</tr>
<tr>
<td>– Bioenergy + Customer Solutions</td>
<td>0-5%</td>
</tr>
<tr>
<td>Average ROCE, 2019-2025</td>
<td>~10%</td>
</tr>
<tr>
<td>Average yearly growth in EBITDA from wind farms (offshore + onshore) in operation, 2017-2023</td>
<td>~20%</td>
</tr>
<tr>
<td>Share of contracted and regulated EBITDA, avg. 2019-2025</td>
<td>~90%</td>
</tr>
<tr>
<td>Green share of generation, 2025</td>
<td>99%</td>
</tr>
</tbody>
</table>
Purpose-driven, global, green energy leader delivering market leading returns through scale, innovation, superior execution, and financial discipline
2019 key milestones

Offshore
- Commissioning of Hornsea 1
- FID on Changhua 1&2a in Taiwan
- Outcome of NJ, NY, RI and MA solicitations
- Full consent for Hornsea 3 project
- Successful integration of Deepwater Wind

Onshore
- Successful integration of Lincoln Clean Energy
- Commissioning of Lockett (184MW)
- FID on Sage Draw (300MW) and Plum Creek (230MW)
- First utility scale storage solution in operation (UK)
- Solar PV project (Permian)

Bioenergy
- Completion of Renescience plant in Northwich
- Biomass-conversion of Asnæs plant
- FID on two new biogas plants

Customer Solutions
- Divestment of Distribution and B2C businesses
- First corporate offshore PPAs signed
- Signing of oil and gas pipeline divestments
Thomas Brostrøm

President, Ørsted North America. CEO, Ørsted US Offshore

Born: 1979

Education: M.Sc. in Finance and International Business

<table>
<thead>
<tr>
<th>Year</th>
<th>Position and Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015 –</td>
<td>Ørsted A/S President & CEO, Ørsted North America</td>
</tr>
<tr>
<td>2014 – 2015</td>
<td>Ørsted A/S Director, Markets and Pipeline</td>
</tr>
<tr>
<td>2012 – 2014</td>
<td>Ørsted A/S Senior Manager, Head of Project Development UK</td>
</tr>
<tr>
<td>2009 – 2012</td>
<td>Ørsted A/S Various senior positions, Head of Renewables</td>
</tr>
<tr>
<td></td>
<td>Strategy and Performance, Business Developer and M&A</td>
</tr>
<tr>
<td>2007 – 2009</td>
<td>Straumur Investment Bank Associate</td>
</tr>
<tr>
<td>2005 – 2007</td>
<td>COWI and Bank Invest / NorthCap Partners</td>
</tr>
</tbody>
</table>

Board member American Wind Energy Association (2017 – Now)
Former Board Member RenewableUK (2013 – 2015)
Jeffrey Grybowski
Co-CEO, Ørsted US Offshore

Born: 1971
Education: J.D. in Law

2018 – Ørsted A/S
Co-CEO, Ørsted North America

2012 – 2018 Deepwater Wind
CEO

2010 – 2012 Deepwater Wind
Chief Administrative Officer and Senior Vice President, Strategy and External Affairs

2007 – 2010 Hinckley, Allen & Snyder LLP
Partner

Chief of Staff

2001 – 2003 Hinckley, Allen & Snyder LLP
Associate

The integration of Deepwater Wind creates the leading US offshore wind platform

Portfolio
- One 30MW project in operation, three projects with 850MW PPA’s secured and 1,700MW net development pipeline

Pioneer
- Permitting and operational experience from first US offshore wind farm
- Secured best lease areas along Eastern seaboard with proximity to shore and grid connection

Organisation
- Strong complementary fit merging leading local development skills with Ørsted’s global execution capabilities

Net capacity of US projects

<table>
<thead>
<tr>
<th>MW</th>
<th>Constructed</th>
<th>Awarded</th>
<th>Pipeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,500</td>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>850</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7,080</td>
<td></td>
<td>850</td>
<td>30</td>
</tr>
<tr>
<td>6,200</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Bloomberg New Energy Finance (BNEF), Bureau of Ocean Energy Management (BOEM)
Uniquely positioned with large adjacent projects, comprehensive geographic coverage and attractive partners

- **Scale**
 - Large scale cluster projects in the North East (MA, CT, RI, NY) and Mid Atlantic (NJ, DE, MD)

- **Site proximity**
 - Adjacent sites allow for significant synergy potential

- **Geographic coverage**
 - Most comprehensive geographic coverage with opportunity to bid into all states from MA to VA

- **Attractive partners**
 - JV’s with leading utilities in New England (Eversource) and New Jersey (PSEG) bring strong, local transmission know-how

Source: Bureau of Ocean Energy Management (BOEM)
Block Island provides valuable experience for next rounds of projects

<table>
<thead>
<tr>
<th>Block Island (30MW)</th>
<th>Power sold to</th>
<th>COP</th>
<th>FID/COD</th>
<th>Turbines</th>
<th>Tax credit</th>
<th>Offtake solution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rhode Island</td>
<td>2012</td>
<td>2015/2016</td>
<td>GE 6MW</td>
<td>30% ITC</td>
<td>USD 236/MWh</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.5% price escalator 20 years</td>
</tr>
</tbody>
</table>

- **Tax credit**: First offshore wind project to obtain tax credit
- **Federal permitting**: First offshore wind project to go through federal permitting. Significant stakeholder engagement and local knowledge required
- **Local supply chain**: First offshore wind project to utilise the local supply chain
Multiple projects with separate PPA’s constructed as one 730MW project

<table>
<thead>
<tr>
<th></th>
<th>South Fork (90 + 40MW)</th>
<th>Revolution Wind (200MW)</th>
<th>Revolution Wind (400MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power sold to</td>
<td>New York</td>
<td>Connecticut</td>
<td>Rhode Island</td>
</tr>
<tr>
<td>COP</td>
<td>2019/2020</td>
<td>2020/2021</td>
<td>2020/2021</td>
</tr>
<tr>
<td>FID/COD</td>
<td>~2020/2022</td>
<td>~2021/2023</td>
<td>~2021/2023</td>
</tr>
<tr>
<td>Turbines</td>
<td>To be decided</td>
<td>To be decided</td>
<td>To be decided</td>
</tr>
<tr>
<td>Tax credit</td>
<td></td>
<td>Tax credit qualifying equipment secured</td>
<td></td>
</tr>
<tr>
<td>Offtake solution</td>
<td>90 + 40MW approved by LIPA¹</td>
<td>Fully negotiated subject to regulatory approval²</td>
<td>Under negotiation²</td>
</tr>
</tbody>
</table>

¹ Long Island Power Authority
² Option to participate in the capacity market
Well positioned for further development in Mid Atlantic

Coastal Virginia
- **Power sold to**: Virginia
- **COP**: Approval of amendment pending
- **FID/COD**: N/A / 2020
- **Turbines**: SGRE 6MW
- **Tax credit**: N/A
- **Offtake solution**: N/A

Skipjack
- **Power sold to**: Maryland
- **COP**: 2020
- **FID/COD**: ~Post COP-award/2022
- **Turbines**: To be decided
- **Tax credit**: To be decided
- **Offtake solution**: 20-year OREC, USD 171/MWh, 1% price escalator per year

1. Ørsted only providing EPC services for Coastal Virginia (owned by Dominion Energy)
6,200MW development pipeline across the east coast

Net project pipeline

- **Bay State Wind**: 1,000 MW
- **Revolution Wind**: 1,300 MW
- **Ocean Wind**: 3,500 MW
- **Garden State**: 400 MW
- **Total pipeline**: 6,200 MW

1. Net capacity takes into account ownership share of sites
2. Source: Bureau of Ocean Energy Management (BOEM)
Significant political ambitions and upcoming opportunities

<table>
<thead>
<tr>
<th>State</th>
<th>GW</th>
<th>Targets</th>
<th>Upcoming opportunities</th>
</tr>
</thead>
<tbody>
<tr>
<td>New York</td>
<td>2.4</td>
<td></td>
<td>Oct 2018² Rhode Island zero-carbon RFP 200-400MW</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>3.2</td>
<td></td>
<td>Feb 2019 New York 1st 800-1,200MW</td>
</tr>
<tr>
<td>New Jersey</td>
<td>3.5</td>
<td></td>
<td>H2 2020 New York 2nd 800-1,200MW</td>
</tr>
<tr>
<td>Connecticut</td>
<td>0.2-1.0</td>
<td></td>
<td>H1 2019 Massachusetts 2nd offshore wind RFP 800MW</td>
</tr>
<tr>
<td>Rhode Island²</td>
<td>0.4</td>
<td></td>
<td>H2 2021 Massachusetts 3rd offshore wind RFP 800MW</td>
</tr>
<tr>
<td>Virginia</td>
<td>Up to 2.0</td>
<td></td>
<td>H1 2019 Massachusetts 2nd offshore wind RFP 800MW</td>
</tr>
<tr>
<td>Maryland</td>
<td>12-13</td>
<td></td>
<td>H2 2020 New Jersey 2nd 1,200MW</td>
</tr>
</tbody>
</table>

1. No official offshore wind target, but capacity already awarded or planned as auctions
2. Auction result pending
3. Part of Bay State Wind lease
Source: Bloomberg New Energy Finance (BNEF), US National Renewable Energy Laboratory (NREL)
Largest project pipeline, widest geographic reach and strong partnerships

Net capacity by developer

<table>
<thead>
<tr>
<th>Developer</th>
<th>MW</th>
<th>Awarded</th>
<th>Constructed</th>
<th>Ørsted partner</th>
<th>Geographic coverage¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ørsted</td>
<td>~7,100</td>
<td>8</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Avangrid</td>
<td>~3,900</td>
<td>5</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIP</td>
<td>~1,500</td>
<td>4</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US Wind</td>
<td>~3,000</td>
<td>3</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dominion Energy</td>
<td>~2,000</td>
<td>1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Eversource</td>
<td>~1,000</td>
<td>4</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equinor</td>
<td>~1,000</td>
<td>4</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSEG</td>
<td>~400</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Net capacity takes into account ownership share of sites
2. Includes Ørsted’s opportunity to access Virginia from strategic partnership with Dominion Energy
3. Geographic coverage is defined by the number of States which the developer has access to via its leases

Source: Bloomberg New Energy Finance (BNEF), US National Renewable Energy Laboratory (NREL)

Key Points

- **First mover**
 Ørsted in a front-runner position by moving early into the US

- **Attractive partners**
 Selecting strong local partners provides robustness and complementary fit in new markets

- **Superior lease areas**
 Ørsted lease areas are superior to upcoming new leases: less conflicted areas, close to established markets and located in relatively shallow waters

39
The leading offshore wind developer in the US

Combined portfolio of Ørsted and Deepwater Wind creates the largest project pipeline in the US

Attractive PPA’s secured with further opportunities for optimisation

Strong organisation with complementary skills
Ole Kjems Sørensen
Executive Vice President, Onshore and M&A

Born: 1972
Education: Master of Law, Aarhus University

2018 – Ørsted A/S
EVP Onshore and M&A

2016 – 2018 Ørsted A/S
Senior Vice President, Head of Partnerships, M&A & Asset Management in Wind Power

2014 – 2016 Ørsted A/S
Vice President, Head of Commercial Transactions & Market Development in Wind Power

2012 – 2014 Ørsted A/S
Vice President, Head of Partnerships and M&A in Wind Power

2011 – 2012 Ørsted A/S
Senior Director, Head of Wind Power M&A

2006 – 2011 Ørsted A/S
Senior Manager, Group M&A

2004 – 2006 ATP
Private Equity Partners, Vice President

1999 – 2004 Gorrissen Federspiel
Lawyer
Declan Flanagan
CEO, Lincoln Clean Energy

Born: 1974
Education: B.Sc., National University of Ireland, M.Sc., University of Ulster and MBA, Kellogg School of Management, Northwestern University

2009 – Lincoln Clean Energy
Founder and CEO

CEO & Board member of Global Renewables Business

2003 – 2007 Airtricity North America
CEO

2000 – 2003 Airtricity Holdings
Regulation & Trading Manager

Former member of the boards of both the American Wind Energy Association and the Solar Industry Association
Lincoln Clean Energy at time of acquisition

Portfolio Overview

1. Potential future capacity based on LCE’s existing project pipeline at time of the acquisition
2. Operational portfolio includes 10MW of Solar PV
3. Including pipeline post-2020

<table>
<thead>
<tr>
<th>Capacity in MW</th>
<th>Operational</th>
<th>Construction</th>
<th>Near-term development</th>
<th>Total by 2020</th>
<th>Pipeline (post-2020)</th>
<th>Total by 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>513</td>
<td>300</td>
<td>714</td>
<td>1,527</td>
<td>~1,000</td>
<td>~2,500</td>
</tr>
<tr>
<td></td>
<td>100% PTC</td>
<td></td>
<td></td>
<td>60% PTC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Geographic footprint

% split by MW

- ERCOT: ~60%
- SPP: ~30%
- MISO: ~10%

Total by 2020: ~2,500MW

Note:
- 1. Potential future capacity based on LCE’s existing project pipeline at time of the acquisition
- 2. Operational portfolio includes 10MW of Solar PV
- 3. Including pipeline post-2020
Acquisition price based on prudent assumptions, expect to achieve high single digit IRR

Purchase price breakdown

Illustrative

1. PTC Glide Path: projects eligible to Production Tax Credits (PTCs) at less than 100%

Acquisition price based on prudent assumptions, expect to achieve high single digit IRR
Operating portfolio
813MW

Amazon Windfarm Texas (Dermott) (253MW)
- ISO: ERCOT
- COD: 2017
- Turbines: 110 GE / 2.3MW
- Tax Equity: 50% GE EFS¹
- Offtake solution: PPA with Amazon and Iron Mountain 15 years

Willow Springs Wind (250MW)
- ISO: ERCOT
- COD: 2017
- Turbines: 100 GE / 2.5MW
- Tax Equity: 50% BHE³
- Offtake solution: 193MW (77%) Hedge with BAML² 13 years

Tahoka Wind (300MW)
- ISO: ERCOT
- COD: 2018
- Turbines: 120 GE / 2.5MW
- Tax Equity: 100% BHE³
- Offtake solution: 231MW (77%) Hedge with BAML² 13 years

813MW includes Oak Solar a 10MW Solar Project, commissioned 2011, no tax equity, fully merchant power. RECs until May 2020

Bold = Development post acquisition

1. GE EFS: GE Energy Financial Services
2. BAML: Bank of America Merrill Lynch
3. BHE: Berkshire Hathaway Energy
Large scale, low capex portfolio with solid offtake

Key metrics

- ~45% Average historic load factor
- <1.5 USD/m/MW CAPEX multiples lower than BNEF 2017 benchmarks
- 22 USD/MWh Average nominal offtake pricing\(^1\)
 - 83% contracted\(^2\)

Portfolio highlights

- Large scale assets with top tier partners
- Over $1 billion in tax equity raised representing c. 80% of total capex at COD
- Tahoka was one of the largest single investor tax equity financings in US wind power at $305 million
- Amazon Windfarm Texas long term agreement was the largest volume corporate offtake in the US at time of execution

\(^1\) Weighted average including escalation for PPA lifetime
\(^2\) Weighted average annual offtake volume
Near term pipeline
714MW

<table>
<thead>
<tr>
<th>Wind Farm</th>
<th>Capacity (MW)</th>
<th>ISO</th>
<th>FID/COD</th>
<th>Turbines</th>
<th>Tax Equity</th>
<th>Offtake solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lockett Wind</td>
<td>184</td>
<td>ERCOT</td>
<td>Q4 18/Q3 19</td>
<td>75 GE/2.45MW</td>
<td>100% BHE</td>
<td>PPA with Allianz for 80% capacity 10 years</td>
</tr>
<tr>
<td>Sage Draw Wind</td>
<td>300</td>
<td>ERCOT</td>
<td>Q2 19/Q1 20</td>
<td>120 GE/2.5MW</td>
<td>Expected 2019</td>
<td>PPA with Blue Chip C&I for 83% capacity 12 years</td>
</tr>
<tr>
<td>Plum Creek Wind</td>
<td>230</td>
<td>SPP</td>
<td>Q4 19/Q4 20</td>
<td>GE +2.5MW</td>
<td>Expected 2019</td>
<td>PPAs with Smucker Co, Avery Dennison and Vail Resort, >70% of capacity contracted 12 years</td>
</tr>
</tbody>
</table>

Bold = Development post acquisition

1. BHE: Berkshire Hathaway Energy

48
Capex and load factor improvements drive lower LCOE

Key metrics

~47% Expected average load factor\(^1\)

<1.2 $/MWh Capex multiples lower than BNEF 2019 benchmarks

12-15 $/MWh Expected nominal range of offtake pricing\(^2\)

Turbine progression Increase in energy capture and capex reduction compensates for lower PPA pricing

Key developments since acquisition

All major contracts in place for near term pipeline with 80% volume contracted\(^3\):

- Lockett: Final Investment Decision taken
- Sage Draw: Executed PPA for 83% capacity
- Plum Creek: >70% offtake and turbine supply agreement executed

1. Weighted average expected load factor
2. Weighted average including escalation for PPA lifetime
3. Weighted average annual offtake volume. Target offtake met, may add more opportunistically
Well positioned to realise an additional 1GW between 2020 and 2022

Pipeline to 2022

- **MW**
 - Total by 2020: ~1,527
 - Pipeline to 2022: ~1,000
 - Target by 2022: ~2,500

Targeting 1GW growth to 2022 from:

- **Regionally diverse portfolio:**
 - ERCOT South
 - ERCOT West
 - MISO
 - SPP

- **Multi-technology projects:**
 - **Wind**
 - Average size 300MW, eligible for at least 60% PTC
 - **Solar**
 - Capitalize on favorable ITC glide path and customer demand
Today we are announcing 500MW of wind and solar PPAs with ExxonMobil

Sage Draw Wind
300MW
250MW PPA
COD Q1 2020

Permian Solar
350MW
250MW PPA
COD Q2 2021

The two long term PPA’s executed in Texas with ExxonMobil are a case study of where onshore renewables is heading

- Multi-technology to meet corporate demand for 24hr green energy
- Development/execution efficiency in the core West Texas wind footprint
- Further synergies possible in long term operations and capex

Potential for further additions of solar to portfolio but remain largely wind focused

LCE solar track record
MW
10
Oak Solar
New Jersey
- Full greenfield project
- COD 2011

10
Lone Valley 1
California
- Early stage acquisition project
- Secured PPA with SoCal Edison
- COD 2014
- Sold to EDPR

20
Lone Valley 2
California
- Expansion project
- Secured PPA with SoCal Edison
- COD 2014
- Sold to EDPR

350
Permian
Texas
- Project in development
- Secured 250MW PPA with ExxonMobil

MW
LCE in a strong position to meet demand in the post subsidy era

US net wind capacity additions

GW

Unprecedented buildout Some market recalibration Growth driven by consumer demand and continued reduction in LCoE

<table>
<thead>
<tr>
<th>Year</th>
<th>PTC era</th>
<th>PTC Glide Path</th>
<th>Post PTC era</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018</td>
<td>8.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>10.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>11.4</td>
<td>18.5 GW</td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td>5.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td>4.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2023</td>
<td>8.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td>8.4</td>
<td></td>
<td>4.5</td>
</tr>
<tr>
<td>2025</td>
<td>8.2</td>
<td></td>
<td>5.7</td>
</tr>
<tr>
<td>2026</td>
<td>6.0</td>
<td></td>
<td>4.2</td>
</tr>
<tr>
<td>2027</td>
<td>4.5</td>
<td></td>
<td>4.9</td>
</tr>
<tr>
<td>2028</td>
<td>5.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2029</td>
<td>4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>4.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: BNEF New Energy Outlook
LCE has development capabilities to be competitive in the post PTC era

Maximising value of acquisitions

- Phase 2 of a prior acquisition
- Utilised retained connection rights
- Increased interconnection agreement by 20% post acquisition
- Created a new project with a very competitive cost base

Proven execution

- Acquired as a project directed into the transmission system via a low value connection point in SPP
- Worked with the transmission company to bring a decommissioned line back into service
- Enabled Tahoka to secure access to the higher value ERCOT market

Executing corporate solutions

- PPA with Amazon was the largest volume corporate offtake in the US at time of execution
- Involved extensive collaboration with Amazon management
- Full greenfield project

Financing innovation

- Experienced in utilizing the spectrum of offtake structures
- Recently executed a hedge with Allianz effectively reducing shape risk
- Full greenfield project

Multi-technology solutions

- Track record in both wind and solar leads to cross selling opportunities
- Leverage strong relationship with C&I
- Opportunity only accessible as a result of the acquisition
LCE and Ørsted a powerful combination to succeed in US market

LCE

- **Relationships and Market Knowledge**
 Successful track record in multiple US states, over 150 years of combined experience in the US market

- **Tax Equity Capabilities**
 Close relationship with tax equity investors

- **Offtake Solutions**
 Corporate and utility PPAs, financial hedges

Ørsted

- **Balance Sheet Strength**
 Credit assurance and funding availability

- **Scale**
 Procurement and ability to deploy resources

- **In-House Capabilities**
 Expertise in complex engineering
The leading onshore wind developer in the US

Significant progress since acquisition
- Tahoka fully operational
- Final Investment Decision taken for Lockett
- Executed PPA on Sage Draw for 83% capacity
- >70% offtake secured for Plum Creek

LCE/Ørsted have the right capabilities to be competitive in the post PTC era

A regional cross-technology platform to meet future corporate demand and drive growth
Martin Neubert
Executive Vice President, CEO Offshore

Born: 1973
Education: M.Sc. in Economics and Finance (FAU) & CFA

2018 – Ørsted A/S
Executive Vice President, CEO Offshore

2016 – 2018 Ørsted A/S
Chief Strategy Officer, Head of Strategy, Development and Regulatory, Offshore Wind

2012 – 2016 Ørsted A/S
Head of Partnerships, Offshore Wind

2008 – 2012 Ørsted A/S
Head of Group M&A, Head of Equity Partnerships

2005 – 2008 Bain Capital
Associate in Private Equity

2000 – 2005 Arthur Andersen & EY
Various positions
Thyge Boserup
Senior Vice President, Head of Development, Regulatory & Markets, Offshore

Born: 1970
Education: M.Sc. in Economics

2018 – Ørsted A/S
Senior Vice President, Head of Development, Regulatory & Markets, Offshore

2016 – 2018 Ørsted A/S
Senior Director, Head of Market & Project Development, Offshore Wind

2014 – 2015 TB advisory
Independent advisor

2008 – 2014 Saxo Bank A/S
Executive Vice President, Chief Commercial Officer

2007 – 2008 Danisco A/S
Vice President, Head of Corporate Development

2002 – 2006 ISS A/S
Senior Vice President, Head of Corporate Affairs and Investor Relations
Unprecedented track record in capturing valuable growth in competitive allocations

Competitive tenders and auctions by market 2016-2018

2016

2017

2018

2025 ambition set

2025 ambition secured

Net offshore wind capacity secured

MW secured since 2015

Auction hit rate

37% capacity secured in the past 36 months

1. 33% excl. Deepwater Wind
2. Net capacities are defined as the developer's ownership share of the offshore wind project
3. Auction hit rate equal to number of auctions where capacity was secured divided by number of unique auctions participated in since 2015
4. Vattenfall capacity includes Horns Rev III (407MW) secured in 2015, Iberdrola capacity includes East Anglia ONE (714MW) secured in 2015
5. RWE winning capacity calculated as Innogy and E.ON's aggregated winning capacity
Market leader with the largest asset base in operation, in construction and in development

Offshore wind competitive picture
2018 market share of global capacity constructed and under construction, %

Global offshore wind capacity (gross)²
Construct, under construction, awarded and pipeline³, GW

1. RWE capacity and market share calculated as Innogy and E.ON combined
2. Gross capacity implies full share of partnership projects
3. Defined as net capacity of project rights exclusively owned by developer, if ownership share is not disclosed 100% is assumed
11-12 GW ambition secured ahead of time – new ambition set towards 2025

Ørsted Offshore capacity (gross)

GW

Ørsted Offshore capacity – updated ambition

GW

+2-3 GW

1. 2020 includes Borssele 1&2 capacity, COD expected in Q4 2020/Q1 2021

<table>
<thead>
<tr>
<th>Year</th>
<th>GW</th>
<th>2020</th>
<th>2025 ambition</th>
<th>2025 incl. Deepwater Wind</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018</td>
<td>5.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>7.5</td>
<td>1.4</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>German projects</td>
<td>11</td>
<td></td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>Greater Changhua</td>
<td>11.9</td>
<td></td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Deepwater Wind</td>
<td>12.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

New 2025 ambition: ~15 GW

Additional capacity: 2.3 GW

Acquisition: +2-3 GW

Constructed | Under construction | Awarded | Acquisition
Increased 2025 ambition on the back of a strong short-term opportunity pipeline

Upcoming firm opportunities in regions with existing footprint for Ørsted Offshore

- **Sep 2018**: Connecticut zero-carbon solicitation\(^1\) - 800MW
 - Ørsted opportunity: Constitution Wind\(^2\)
- **Oct 2018**: Rhode Island zero-carbon RFP\(^1\) - 200-400MW
 - Ørsted opportunity: Revolution Wind
- **Dec 2018\(^3\)**: New Jersey 1st - 300-1,100MW
 - Ørsted opportunity: Ocean Wind
 - Garden State
- **Jan 2019**: Holland Coast South 3 & 4 - 2x380MW
 - Ørsted opportunity: Revolution Wind
 - Garden State
- **H1 2019**: Massachusetts 2nd offshore wind RFP - 800MW
 - Ørsted opportunity: Bay State Wind
 - Revolution Wind
- **H2 2019**: Holland Coast, North 1 & 2 - 2x380MW
 - Ørsted opportunity: Revolution Wind
- **H1 2020**: New Jersey 2nd - 1,200MW
 - Ørsted opportunity: Bay State Wind
 - Revolution Wind
- **H2 2020**: New York 2nd - 800-1,200MW
 - Ørsted opportunity: Ocean Wind
- **H2 2020**: Holland Coast West 1 - 2x380MW
 - Ørsted opportunity: Hornsea 3
- **2021**: Belgium tender ~700MW

Additional 2025 ambition

- **Jan 2019**: New York 1st - 800-1,200MW
 - Ørsted opportunity: Revolution Wind
- **H2 2019**: Holland Coast West 1 - 2x380MW
 - Ørsted opportunity: Hornsea 3
- **H2 2020**: Holland Coast West 2 - 2x380MW
 - Ørsted opportunity: Hornsea 3
- **Dec 2018**: New Jersey 1st - 300-1,100MW
 - Ørsted opportunity: Ocean Wind
 - Garden State
- **Sep 2018**: Connecticut zero-carbon solicitation\(^1\) - 800MW
 - Ørsted opportunity: Revolution Wind

Further potential opportunities across the globe

1. Auction result pending
2. Part of Bay State Wind lease
3. Bids due on 28 December in New Jersey – winners expected to be selected by July 2019
4. Total opportunities estimated as the sum of the 14 opportunities combined with the average taken of the ranges

Accelerated global growth towards 2030 – a substantial part is already backed by political commitments

Offshore wind installed capacity forecast excl. China

<table>
<thead>
<tr>
<th>GW</th>
<th>Number of markets</th>
<th>US</th>
<th>APAC excl. China</th>
<th>Europe</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>~20</td>
<td>9</td>
<td>43</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+20</td>
<td>~8GW/y</td>
<td>56</td>
<td></td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>~6GW/y</td>
<td>26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Offshore wind capacity with firm political commitment

Targets in existing footprint markets
- The UK government has a CfD roadmap with bi-yearly auctions of 2-4GW towards 2030 to reach 30GW
- Target of 15GW offshore wind by 2030
- Offshore Wind Energy Roadmap 2030 outlines 11.5GW by 2030 through 1GW per year post 2023
- MA 2027 (2035) target: 1.6 (3.2) GW. VA 2028 target: 2.0GW.
- NJ 2030 target: 3.5GW. NY 2030 target: 2.4GW.
- Current 2025 target of 5.5GW which has already been reached through grid allocation and price auction
- outlined plan for three 800MW (2.4GW) offshore wind projects before 2030 by the Danish Government leading to a total of 5GW in 2030
- Authorities of Belgium have announced plans for offshore wind targets of 2.2GW by 2020 and 4GW by 2030

Targets in next horizon markets
- The Indian government has target of 5GW before 2022 and 30GW by 2030
- The South Korean government has a total wind target of 18GW by 2030 of which 13GW is allocated to offshore wind
- France has a 2023 target of 3GW installed and 6GW in the pipeline post 2023

~81GW

~46GW

1. Number of markets with installed capacity by BNEF above 200MW with US States treated as separate markets
2. US includes the latest BNEF US offshore wind forecast from September 2018. This forecast is 3GW higher than H1 2018 offshore Wind Outlook from July 2018
3. Firm political commitment is defined by a country’s public offshore wind target by 2025/2030
Source: Bloomberg New Energy Finance (left side), Governments’ official energy outlook (right side)
Dedicated front end organisation managing the global development portfolio across the globe

Develop

- +250 FTEs focused on market, project and business development
- ~11GW under development across six different markets
- Global presence with three hubs: Europe, APAC and US
- Annual DEVEX of DKK ~1.8bn (2019-2022)

Build

Operate

Own

DEVEX breakdown

- Project management, design and procurement
 - Development and optimisation of projects through the development cycle
- Site investigations
 - Geotechnical and geophysical investigations of array area and cable route (primarily 3rd provider)
 - Deployment of wind- and met ocean measurement equipment
 - Technical analysis of site data, and development of geological models
- Land rights
 - Commercial agreements and acquisition of rights to onshore land for cable routes, onshore substation and harbour facilities
- Consent and permits
 - Permitting processes, including stakeholder engagement, permit applications, public hearings, and Environmental Impact Assessments (EIAs)
- Market development
 - Development of existing and new markets, including regulatory engagement and identification of new project opportunities
Successful market and project development approach established to ensure value creation when entering new markets

Market and project development approach

1. Early stakeholder engagement
2. Establish local offices and secure project rights either through greenfield investments or M&A
3. Find local partner with complementary competencies
4. Ability to scale fast

Market examples

- Strong stakeholder engagement and involvement in the development and build-up of UK offshore wind market
- Early engagement with local stakeholders since 2013/2014 enabled an effective market entry in 2016
- Securing +6GW Hornsea zone has given Ørsted consistent opportunities through several bid rounds in the UK
- Acquired small German projects in close proximity to gain significant scale advantages through Borkum Cluster, Gode Wind Cluster and Cluster 1
- Partnership with leading transmission builder in New England, Eversource Energy, for the Bay State Wind project in Massachusetts
- JV with Swancor and Macquarie for the first offshore wind farm in Taiwan, Formosa 1, to access local knowledge early in the development process
- Strong track record by developing and building the largest offshore wind farms in the world
- Became largest developer in Taiwan by securing capacity in both grid allocation and price auction

Strong position in the UK with +4 GW pipeline opportunities

 Ørsted Offshore’s activities at UK East Coast

Hornsea 4
- 1,200MW potential capacity
- ~100km from shore
- Water depths of 24-68m
- Wind speeds of ~10m/s

Hornsea 3
- 2,400MW potential capacity
- ~120km from shore
- Water depths between 24-73m
- Wind speeds of ~10m/s

Race Bank Ext.
- 573MW potential capacity
- Water depths of ~15m
- Wind speeds of 9-10m/s

Market update and Ørsted opportunities

UK 1st and 2nd CfD auction outcome

<table>
<thead>
<tr>
<th>Company</th>
<th>MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ørsted</td>
<td>1,386</td>
</tr>
<tr>
<td>EDPR, Engie, DGE</td>
<td>950</td>
</tr>
<tr>
<td>RWE</td>
<td>860</td>
</tr>
<tr>
<td>Scottish Power</td>
<td>714</td>
</tr>
<tr>
<td>Mainstream Renewable Power</td>
<td>448</td>
</tr>
</tbody>
</table>

Market
- Next UK CfD auction to be initiated May 2019, subsequent auctions every two years
- Target annual build-out of 1-2GW towards 2030. Target of 30GW capacity by 2030
- The Crown Estate extension projects applications approved (3.4GW)
- Round 4 lease auctions in 2019

Ørsted
- Hornsea 3 and 4 consent process and preparation ongoing
- Satisfied application criteria for development of Race Bank Extension (573 MW) and further expectations to participate in process for new leasing rounds, expected to be initiated in 2019
Ørsted Offshore’s activities in Germany

Cluster 1
- 900MW capacity awarded
- ~65km from shore
- Water depths of ~30m
- Wind speeds of ~9-10m/s

Borkum Cluster
Gode Wind Cluster
Nördlicher Grund

Operational
Under construction
Option awarded
Other Ørsted sites
Adjacent sites
O&M hub

Market update and Ørsted opportunities

German transitional auctions outcome

<table>
<thead>
<tr>
<th></th>
<th>MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ørsted</td>
<td>590</td>
</tr>
<tr>
<td>EnBW</td>
<td>552</td>
</tr>
<tr>
<td>Iberdrola</td>
<td>486</td>
</tr>
<tr>
<td>RWE</td>
<td>325</td>
</tr>
<tr>
<td>WV Energie, KNK Ocean Breeze</td>
<td>247</td>
</tr>
</tbody>
</table>

Market
- First centralised tender expected in 2021, approximately 800MW to be built per year from 2026
- Centralised tender expected on a yearly basis towards 2030
- Target of 15GW offshore wind capacity by 2030

Ørsted
- 1,142MW awarded to Ørsted in the two transitional auctions
- Gode Wind 3&4 cluster will have a capacity of 242MW at weighted average price of EUR 81/MWh
- Cluster 1 awarded at price of EUR 0/MWh with 900MW total capacity
- Nördlicher Grund handed back for consideration in centralised tender

1. Nördlicher Grund is handed over to the German government for use in centralised auction system post 2021
2. The auction was won by Innogy
3. Combined ownership share of 82%, the other 18% is owned by iKB Innsbrucker Kommunalbetriebe and SBV Stadtwerke Bad Vibel
Market leading position in Taiwan with 1.8GW secured capacity

Ørsted Offshore’s activities in Taiwan

Formosa 1
- 128MW capacity
- 2.6km from shore
- Water depths of 15-35m
- 35% ownership share

Changhua 1 & 2 & 4
- 1,820MW capacity awarded
- 35-60km from shore
- Water depths of 35-45m
- Wind speeds of 9-10m/s

Market update and Ørsted opportunities

Taiwan allocation and auction outcome

<table>
<thead>
<tr>
<th>MW</th>
<th>Ørsted</th>
<th>WPD</th>
<th>Northland Power, Yushan Energy</th>
<th>Mitsui & Co.</th>
<th>CIP, China Steel</th>
<th>SWE, Macquarie, ENBW</th>
<th>Taipower</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>900</td>
<td>1,058</td>
<td>300</td>
<td>1,044</td>
<td>300</td>
<td>378</td>
<td>300</td>
</tr>
</tbody>
</table>

Market
- Taiwan has now met its target of awarding 5.5GW of capacity to be installed by 2025
- Future auctions are being planned for projects post 2025

Ørsted
- 900MW² awarded in grid allocation in April – expected to be completed in 2021 subject to FID in 2019
- 920MW² awarded in price-based auction in June. Expected to be completed in 2025, subject to FID in 2023. Winning bid price was TWD 2,548/MWh (~EUR 72.3/MWh)
- Greater Changhua 3 (583MW) available for future auctions

Awarded projects
- Exclusive pipeline options
- APAC Headquarters

1. Capacity independently owned by Copenhagen Infrastructure Partners (CIP)
2. Changhua 1 & 2a
3. Changhua 2b & 4
Selected next horizon markets for offshore wind

Japan
- 90% of energy consumption is imported
- Lack of space onshore
- Strong public pressure to phase out nuclear
- Clear political intention to increase renewables

Timeline
- New legislation expected to be in place early 2019 to develop offshore wind

Market
- Government renewable 2030 target of 24% and 10GW target for wind power

Support scheme
- FiT – 20 years in current legislation
- Auction system in place post 2019

Offshore wind regions
Several offshore wind zones exist in Japan. Two major zones highlighted in Aomori and Akita

South Korea
- 94% of energy consumption is imported
- Lack of space onshore
- Strong public pressure to phase out nuclear and coal
- Clear political intention to increase renewables

Timeline
- First operational offshore wind project (30MW) to be commissioned in 2017

Market
- 18GW wind build-out target towards 2030 of which 13GW is offshore

Support scheme
- Renewable Energy Certificates (REC) for 20 years

Offshore wind regions
Four identified provinces: South Jeolla, North Jeolla, South Gyeongsang and Jeju

Selected next horizon markets for offshore wind

Poland
- Coal phase out (60% of electricity consumption by 2030)
- Strong supply chain in place ready to expand if home market materialises
- Leverage the existing solid local position to become European hub

Timeline
- New energy bill expected end of 2018. Current expectation of 8GW build-out in first phase

Market
- Polish transmission system operator recently announced that 4GW of offshore wind capacity could be built by 2027

Support scheme
- No firm support scheme in place

Offshore wind regions
Located in Baltic Sea. 1,980m² designated to offshore wind build-out

India
- Overall target of 175GW renewables by 2022
- Mature onshore wind power supply chain to be leveraged
- Extra financial support from the government expected compared to onshore wind

Timeline
- Call of interest for 1GW expected to have auction rules announced before end of 2018

Market
- Indian government has set targets of 5GW of offshore wind before 2022 and 30GW by 2030

Support scheme
- 25-year PPA expected for first 1GW auction, but details on future support scheme still uncertain

1. Total pipeline includes operational, under construction, planned, proposed and pre-project.

Source: Wood Mackenzie
Monitoring early stage development in floating wind

Different technical concepts
- **Semi-submersible**
- **Spar Buoy**
- **TetraSpar**
- **Barge**
- **Tension-leg platform**

Technology
- Several foundation designs currently being piloted
- No single design with superior technical capabilities in place

Limited pipeline visibility with only small scale projects

<table>
<thead>
<tr>
<th>Floating wind projects</th>
<th>MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installed</td>
<td></td>
</tr>
<tr>
<td>Pipeline</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>2009-2016</td>
<td>8</td>
</tr>
<tr>
<td>2017</td>
<td>42</td>
</tr>
<tr>
<td>2018</td>
<td>7</td>
</tr>
<tr>
<td>2019</td>
<td>29</td>
</tr>
<tr>
<td>2020</td>
<td>84</td>
</tr>
<tr>
<td>2021</td>
<td>24</td>
</tr>
<tr>
<td>2022</td>
<td>30</td>
</tr>
<tr>
<td>Total</td>
<td>224</td>
</tr>
</tbody>
</table>

Key floating markets in areas with significant bottom fixed potential

- **Potential floating wind markets**
- **Floating wind areas and activities**
 - Global regions with activity

Markets
- Major floating markets: UK, Germany, US, France, Japan, Portugal, Norway
- Market able to reach their offshore wind targets through bottom-fixed (California only exception)

Source: Bloomberg New Energy Finance (BNEF), Carbon Trust, Wood Mackenzie
Ørsted is the clear market leader in a rapidly growing industry

- Leading position in a high growth industry
- Strong market fundamentals to support increased growth ambition
- Proven methodology and track record in securing high value projects
Anders Lindberg
Executive Vice President, Head of EPC & QHSE

Born: 1965
Education: EMBA in Business Administration (SSE) & MSc. in Electrical Engineering (KTH)

2018 – Ørsted A/S
Executive Vice President, Head of EPC & QHSE in Offshore

2015 – 2018 Ørsted A/S
Senior Vice President, Head of EPC in Offshore Wind

2014 – IEC Holden
Board member

2011 – 2014 Bombardier Transportation
President Rolling Stock Central & Northern Europe and Asia

2007 – 2011 Bombardier Transportation
President Rail Control Solutions

2004 – 2007 Bombardier Transportation
President Propulsion & Controls
Strong inhouse capabilities and first mover on new technologies

Large integrated EPC organisation with ~1,400 FTEs

- Strong technical capability with proprietary tools (layout, foundation, electrical system analysis, etc.)
- First mover on innovation, e.g. turbine platforms, foundations and cables
- Systematic, institutionalised approach to continuous LCoE reductions
- Industry leading procurement scale
- Multi-contracting approach with direct interactions with suppliers
- Ability to handle risk and uncertainties
- Ability to execute 4-6 large-scale projects at any given time
Ørsted has a strong track record in delivering offshore wind farm projects on time and on budget

Global offshore wind farm projects

<table>
<thead>
<tr>
<th># of projects</th>
<th>RWE¹</th>
<th>Vattenfall</th>
<th>Equinor</th>
<th>SSE</th>
</tr>
</thead>
<tbody>
<tr>
<td># of countries</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

| | 25 | 17 | 11 | 5 |

Strong track record delivering projects below budget and on time

<table>
<thead>
<tr>
<th>FID budget</th>
<th>Time schedule²</th>
<th>COD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Below</td>
<td>2018</td>
</tr>
<tr>
<td>Borkum Riffgrund 2</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Walney Extension</td>
<td>✓</td>
<td>2018</td>
</tr>
<tr>
<td>Race Bank</td>
<td>✓</td>
<td>2018</td>
</tr>
<tr>
<td>Burbo Extension</td>
<td>✓</td>
<td>2017</td>
</tr>
<tr>
<td>Gode Wind 1&2</td>
<td>✓</td>
<td>2016</td>
</tr>
<tr>
<td>Borkum Riffgrund 1</td>
<td>x</td>
<td>2015</td>
</tr>
<tr>
<td>Westermost Rough</td>
<td>Below</td>
<td>2015</td>
</tr>
</tbody>
</table>

Compensation for TSO delay received for Gode Wind 1&2 and despite timing delays, subsidy milestones have never been jeopardised

Notes:
1. RWE calculated as Innogy and E.ON’s capacity installed and under construction combined
2. Delays have been due to grid issues at TSO or turbine supply delay
Ørsted has strong confidence in delivering the current project portfolio and updates the expected completion dates

<table>
<thead>
<tr>
<th>Projects</th>
<th>Hornsea 1</th>
<th>Borssele 1&2</th>
<th>Virginia (EPC)</th>
<th>Hornsea 2</th>
<th>Changhua 1&2a (Expected FID Q1 2019)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country</td>
<td>🇬🇧</td>
<td>🇳🇱</td>
<td>🇺🇸</td>
<td>🇬🇧</td>
<td>🇹🇼</td>
</tr>
<tr>
<td>Capacity</td>
<td>1,218MW</td>
<td>752MW</td>
<td>12MW</td>
<td>1,386MW</td>
<td>900MW</td>
</tr>
<tr>
<td>Expected completion Original</td>
<td>2020</td>
<td>2020/2021</td>
<td>2020/2021</td>
<td>2022</td>
<td>Late-2021</td>
</tr>
<tr>
<td>Expected completion Updated</td>
<td>H2 2019</td>
<td>Q4 2020/Q1 2021</td>
<td>H1 2021</td>
<td>H1 2022</td>
<td>n.a.</td>
</tr>
<tr>
<td>Status, time</td>
<td>Ahead</td>
<td>On track</td>
<td>On track</td>
<td>On track</td>
<td>n.a.</td>
</tr>
<tr>
<td>Status, cost</td>
<td>Below</td>
<td>Below</td>
<td>On track</td>
<td>On track</td>
<td>n.a.</td>
</tr>
</tbody>
</table>
Ørsted continues to drive down cost while creating a strong safety culture

CAPEX

<table>
<thead>
<tr>
<th>IPO portfolio at CMD 2017²</th>
<th>Ørsted European projects³</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.8</td>
<td>13.5</td>
</tr>
</tbody>
</table>

Significantly lower than IPO portfolio driven by continuous efforts to reduce costs, larger turbines and supply chain maturation.

Load factor

<table>
<thead>
<tr>
<th>IPO portfolio</th>
<th>Updated portfolio⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td>48-50</td>
<td>48-50</td>
</tr>
</tbody>
</table>

Maintaining load factor guidance for updated portfolio.

Safety record

<table>
<thead>
<tr>
<th>TRIR⁵ and LTIF⁶, 12 months rolling (Oct)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIR Jun 2016</td>
</tr>
<tr>
<td>3.6</td>
</tr>
<tr>
<td>TRIR Oct 2018</td>
</tr>
<tr>
<td>2.5</td>
</tr>
<tr>
<td>LTIF Jun 2016</td>
</tr>
<tr>
<td>0.9</td>
</tr>
<tr>
<td>LTIF Oct 2018</td>
</tr>
<tr>
<td>0.4</td>
</tr>
</tbody>
</table>

Safety in EPC significantly improved – well below 2018 TRIR target of 6.0.
LCoE has decreased substantially up to today since the first large scale wind farms

LCoE for EPC areas\(^1\)

2013 – today, Index

![Graph showing LCoE decrease from 2013 to 2025](image)

Continuous improvements – reduced LCoE for EPC areas by more than 40% between 2013-18

- **Turbines**
 - Introduction of larger turbines
 - MHI Vestas Offshore Wind introduced as new supplier

- **Foundations**
 - Optimisation of primary steel design and tools
 - Internal and external structures completely redesigned and optimised

- **Transmission**
 - Dynamic rating of cables
 - Analysing seabed conditions to increase throughput
 - Reduction of export cable cross section
 - Move from copper to aluminium conductors

- **Logistics**
 - Move to purpose-built vessels
 - Single season installation

1. LCoE only includes Turbines, Foundation, Transmission and Logistics, i.e. OPEX, Construction Management, resource and other categories outside EPC scope are not included.
Continue working with turbine suppliers to be first movers in bringing new technology to the offshore wind market

Technological updates towards 2025

Today
- 8MW turbines deployed
- 10MW turbines commercially available but not deployed yet

2025
- 12MW turbine already announced
- 13-15MW turbine expected in 2025
- Qualification of new supplier, increasing competition

What do larger turbines imply?
- Increased production due to higher rating and larger rotor
- Fewer positions enabling savings on foundations, array cables and installation
- Reduction of OPEX
Larger turbines are always better – a truth with modifications

- **Rotor size**
 - 8MW: Rotor 167m
 - 9.5MW: Rotor 164m

9.5MW turbine is larger on rated power, but has a smaller rotor than the 8MW

Swept area

- m² per MW
 - 8.0MW: 2,738
 - 9.5MW: 2,223
 - Increase: +23%

Number of turbines

- 1,000 MW site
 - 8.0MW: 125
 - 9.5MW: 105
 - Increase: +19%

The total swept area will be ~23% larger with the 8.0MW turbine but 20 additional positions will be needed at a 1,000MW site

LCoE illustrative

- DKK/mWh
 - 8.0MW: 100
 - 9.5MW: 103

<table>
<thead>
<tr>
<th></th>
<th>8.0MW</th>
<th>9.5MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPEX</td>
<td>-4</td>
<td>-2</td>
</tr>
<tr>
<td>BoP</td>
<td>-21</td>
<td>-21</td>
</tr>
<tr>
<td>OPEX</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>Lost AEP</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

In general the 9.5MW turbine will gain on CAPEX and OPEX and lose on revenue and vice versa for the 8.0MW

In some cases, a smaller 8MW turbine with a large rotor could therefore provide a better business case than a 9.5MW turbine with a similar rotor

1. Balance of Plant
2. Annual Energy Production
Foundation costs will decrease even further by focusing on steel weight and fabricator specific design

Technological updates towards 2025

Today
- Optimised diameter/thickness ratio of steel
- Improved design tools

2025
- Continue optimising diameter/thickness ratio
- Consider the fabricators capabilities and the impact on steel while designing
- Improve modelling of fatigue over time and installation loads
- Secondary structures design optimisation

Bolted connection at Borkum Riffgrund 2 and Hornsea 1
- Introduction of the bolted connection between monopile and transition piece, replacing the grouted connection
- Solution to be used as standard going forward
- Large cost reductions (15-20%) on foundation supply and possibility for all year installation
Increasing capacity of transmission systems will continue to decrease LCoE

Technological updates towards 2025

Today
- Export cables with dynamic rating with a capacity of up to 230kV
- Reduced number of substations

2025
- Increase capacity of export cables by increasing voltage to 275kV and/or increase operating temperatures
- Reduce weight of substations to eliminate use of large offshore substation installation vessels (primarily new markets)

Optimisation at Hornsea 2
- Cable route and seabed conditions analysed, allowing an increase in throughput from 400MW to 440MW per cable, while decreasing the average cross section size
- Reduction of number of substation from 3 to 1
- Asia Pacific sourcing
- ~20% steel saving on topside and ~40% CAPEX saving

1. Including transportation and excluding electrical components
Leverage supply chain and inhouse capabilities to further decrease logistics LCoE

Technological updates towards 2025

Today
- Purpose-built vessels
- Improved vessel capabilities and dual turbine vessels to reduce installation time
- Work with the supply chain to promote new market entries and, thus, improved competition

2025
- Introduce floating installation vessels that can carry larger foundations
- Improve workability to decrease downtime, i.e. ability to install in harsher weather
- Use data to optimise installation concepts based on best practice cycle-times

From jack-ups to floating installation vessels
- No jackup-legs result in larger deck space which means more loading capacity and hereby reduced number of trips
- No dependency on seabed conditions
- No seabed footprint reduce dependency towards cable installation
- Reduces positioning time (~15%)\(^1\) between turbine locations

1. Equivalent to approximately DKK 1m per position
Ørsted continues to optimise each project after FID to further reinforce economics

Value enhancement areas

- Cost reductions
 - Enhanced foundation design, logistics and installation process improvements – CAPEX reduction of DKK 0.7bn
 - Optimised O&M setup with new processes and best practice logistical solutions utilising helicopters, CTV\(^1\) and SOV\(^2\) when operating far from shore – OPEX reduction of DKK 0.5bn (lifetime)

- Risk mitigation
 - Bringing forward the substations and cables to ensure there is time for testing and commissioning
 - Address risks with supply chain delivery, such as re-allocating work to mitigate fabrication delays and ensure on-time installation
 - De-risking CAPEX baseline has released DKK 1.7bn of contingency

- Revenue optimisation
 - Accelerated turbine installation and commissioning – Production ramp up accelerated 2 months (average) per turbine
 - Improved park production curves and lifetime availability – Energy production (AEP) increased 2.4% over project’s lifetime (similar uplift on load factor)

Hornsea 1 achievements\(^1\)

Hornsea 1 has realised a significant IRR uplift (~2.0%-point) since FID excl. FX & power price impact

1. Numbers exclude FX and power price
2. Crew Transfer Vessel
3. Service Operations Vessel
In addition to bringing down cost, Ørsted also pushes to deliver even faster

Installation duration (normalised)\(^1\)

Days from first foundation installation to first power of last turbine

- Smaller projects with 32 or 35 turbines each
- Both parks deployed a new turbine platform with delays from suppliers
- Deployment of known turbine platforms
- Continuous installation schedule (i.e. incl. Winter)

<table>
<thead>
<tr>
<th>Project</th>
<th>Year</th>
<th>Normalised Duration</th>
<th>125 Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Westermost Rough</td>
<td>2014/15</td>
<td>1,543</td>
<td></td>
</tr>
<tr>
<td>Burbo Extension</td>
<td>2015/16</td>
<td>1,020</td>
<td></td>
</tr>
<tr>
<td>Race Bank 2017/18</td>
<td></td>
<td>705</td>
<td>71%</td>
</tr>
<tr>
<td>Walney Extension</td>
<td>2017/18</td>
<td>559</td>
<td>64%</td>
</tr>
<tr>
<td>Hornsea 1 2016/19</td>
<td></td>
<td>448</td>
<td>54%</td>
</tr>
</tbody>
</table>

1. Calculated as duration from foundation installation start until first power of last turbine scaled to 125 position. Based on full scope
Our capabilities enable us to handle issues arising on all projects

Hornsea 1

Issue
Manufacturing delays, quality and HSE issues for Reactor Compensation Station (RCS) at supplier

Action taken
- Early and direct interaction with supplier to resolve issues
- Attempted to incentivise supplier to improve performance
- Qualification of impact on project time schedule utilising on-site Ørsted staff and in-house planning expertise
- Worked stopped by Ørsted several times to address HSE issues
- Scanning market for new supplier(s) to take over work and transportation
- Decision taken to move RCS to new supplier
- Tent erected at new supplier to secure optimal working conditions
- Physical presence at supplier – continuous monitoring and optimising works

Increase in cost kept within project contingency

Borkum Riffgrund 2

Issue
Financial restructuring (bankruptcy risk) at supplier of the 20 jacket structures for the suction bucket jackets

Action taken
- Task force created to deal with supplier
- Direct negotiations with supplier, owners, banks and other contractors
- Ørsted took over scope to allow supplier to continue with reduced scope
- Frequent visits to supplier by senior project management
- Physical presence at supplier – continuous monitoring of progress and financial situation

Overall time schedule maintained
Establishing a presence in a new market takes time and hard work.

Selected key milestones in establishing Ørsted’s presence in Taiwan:

- **2013/14**: Taiwan market development kick-off
- **2016 EoY**: 13 people on the ground (8 expat/5 local)
- **Jan 2017**: Head of Procurement (expat)
- **2017 EoY**: 24 people on the ground (11 expat/13 local)
- **2018 EoY**: 49 people on the ground (20 expat/29 local)
- **2019 EoY**: ~100 people by 2019 (40 expat/60 local)

Ørsted internal activity
- **2013/14**: Taiwan market development kick-off
- **2016**: Meetings with ~15 local suppliers
- **2017 EoY**: Involved EPC contractors and suppliers for onshore transmission
- **2018 EoY**: Partners with National Kaohsiung University of Science and Technology
- **2019 EoY**: Tendered for major CAPEX contracts with Taiwan suppliers
- **2018**: Signed MoUs with key collaboration partners incl. CSC and EGS
- **2019**: Entered major local CAPEX contracts

Ørsted external EPC activity
- **2016**: Investment in Formosa I
- **2016**: Tendered for major CAPEX contracts with Taiwan suppliers
- **2017 EoY**: Awarded first TP mock-up contract
- **2018**: Conducted various supplier events, incl. local supplier network for SME
- **2019**: Tendered for major CAPEX contracts with Taiwan suppliers
- **2019**: EPC contract entered with Delta Electronics to build first MW-size energy storage project on NCUE campus
Ørsted’s capabilities and in depth knowledge enable the development of the supply chain in Taiwan

Key parameters within organisation when entering new markets

- Robust and experienced organisation to develop the supply chain in new markets
- Balancing global supply chain opportunities with local supply chain requirements
- Partnering with other important stakeholders in building the offshore wind industry
- Balanced trade-off between global vs. local suppliers as well as cost and quality

Major local contracts entered

<table>
<thead>
<tr>
<th>Contract</th>
<th>Supplier</th>
<th>Localisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbines</td>
<td>Siemens Gamesa Renewable Energy</td>
<td>Locally produced towers and establishing nacelle assembly factory</td>
</tr>
<tr>
<td>Jacket foundation</td>
<td>Sing Da Marine Structures</td>
<td>56 jacket foundations</td>
</tr>
<tr>
<td>Onshore Substation</td>
<td>Taiwan Cogeneration Corporation</td>
<td>Full EPC contract</td>
</tr>
<tr>
<td>Foundation pin-piles</td>
<td>CSBC Corporation</td>
<td>Significant number</td>
</tr>
<tr>
<td>Foundation pin-piles</td>
<td>Formosa Heavy Industries</td>
<td>Significant number</td>
</tr>
<tr>
<td>Array cable installation</td>
<td>Woen Jinn Harbour Engineering</td>
<td>Significant scope</td>
</tr>
</tbody>
</table>
Ørsted has a leading EPC and innovation capability in offshore wind

Delivering continuous reduction in LCoE

On time and within budget

Fully capable of delivering in new markets
O&M Excellence

Capital Markets Day
28 November 2018
Mark Porter

Senior Vice President, Head of Operations

Born: 1972

Education: BSc(Hons) Engineering & Management (Durham University), MBA (Warwick University), Fellow of the Institution of Mechanical Engineers

- **2018** – Ørsted A/S
 - Senior Vice President, Head of Operations in Offshore
- **2016 – 2018** – E.ON Climate & Renewables
 - Director Asset Management
- **2014 – 2016** – E.ON Climate & Renewables
 - Director Wind Operations
- **2009 – 2014** – E.ON Climate & Renewables
 - Regional Director
 - Various Management Positions
Largest offshore wind O&M owner/operator globally with growth of >50% since 2016 and operation across 3 hubs of 1-2GW each

Operated by Ørsted

<table>
<thead>
<tr>
<th>Year</th>
<th>Capacity</th>
<th>Turbines</th>
<th>Sites</th>
<th>Operations FTEs Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018</td>
<td>4.9GW</td>
<td>~1,100</td>
<td>21</td>
<td>~850</td>
</tr>
<tr>
<td>2016</td>
<td>3.2GW</td>
<td>~860</td>
<td>18</td>
<td>~720</td>
</tr>
</tbody>
</table>

1. Turbine capacity operated not equal to capacity constructed by Ørsted (among other due to operation of third party constructed assets such as Lincs Offshore Wind Farm in the UK).
2. Excludes test/demonstration sites.
Portfolio based on few turbine platforms with increasing self-operation share delivering sustainable performance improvements

- Portfolio is growing providing substantial scale benefits
- Fleet complexity remains low allowing for deep technical insights (5 turbine platforms from 2 OEMs with majority of turbine portfolio being SGRE 3.6MW turbines)

Number of turbines in operation

<table>
<thead>
<tr>
<th>Year</th>
<th>MVOW 8.0MW</th>
<th>SGRE 2.3MW</th>
<th>SGRE 3.6MW</th>
<th>SGRE 6-8MW</th>
<th>Vestas 3.0MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Share of self-operation is increasing improving ability to drive standardisation, performance improvements, implement hubs, etc.
- Improved ability to implement digital solutions reducing O&M service hours and increasing power from turbines

Share of turbines self-operated

<table>
<thead>
<tr>
<th>Year</th>
<th>OEM operated</th>
<th>Self-operated</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>74%</td>
<td>26%</td>
</tr>
<tr>
<td>2018</td>
<td>59%</td>
<td>41%</td>
</tr>
<tr>
<td>2020</td>
<td>40%</td>
<td>60%</td>
</tr>
</tbody>
</table>
Ørsted Operations Framework combines several elements to deliver world-class performance.

Ørsted Offshore Operations Framework

- **Solid & Compliant**: Standard Operating Model
- **Good Practice**: Operational Excellence
- **Best Practice**: Digitalisation & Innovation

2018

Lost revenue

OPEX

2020
Consistent improvement in safety, yield and cost performance after full take-over of operations from OEMs

Safety
Total Recordable Incident Rate (TRIR), 2015-2018

- Ørsted TRIR improved by 45% while contractors improved 28%

Yield
Index, Production Based Availability, portfolio average 2016-2018

- Self-operated sites on average sustain 2% higher availability than OEM operated sites

Cost
Index, OPEX/MW (normalised), portfolio average 2016-2018

- Self-operated sites on average sustain 15% lower OPEX/MW than OEM operated sites

1. TRIR calculated as the number of recordable incidents per 1 million hours worked.
Standardised (ISO certified) O&M system enabling portfolio wide optimization and a blueprint for globalization

ISO
55001:2014 Asset Management (O&M & Integrity)
9001:2015 Quality Management
14001:2015 Environmental Management
45001:2018 Health & Safety Management

First operator worldwide to become ISO certified for offshore wind power assets; ISO certified in Asset Management (O&M and Asset Integrity), Quality and HSE management

Full standardisation of workflows and site organisation (roles and responsibilities)

O&M setup transformed from site by site to portfolio optimisation

Centralised development and optimization of maintenance plans, Work Instructions, etc.

6 Sites certified
148 Work Instructions
63 Troubleshooting guides
270 Approved Written Procedures

Control of HSE, risks, compliance and economic performance

Portfolio standardisation and optimisation of ways of working

Blueprint for future global expansion

Differentiating factor for equity partners and their lenders
1. Mobilization of vessel as well as transport time. Residual is productive time.

Example benefits from sites with Production System implemented

Improvement (9 month average comparable periods pre and post implementation)

<table>
<thead>
<tr>
<th>Industrializing O&M setup</th>
<th>Before</th>
<th>After</th>
<th>Changes implemented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance culture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planning excellence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process optimization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lean mindset</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average vessel mobilisation and transport to site</td>
<td>45% time used on mobilization</td>
<td>32% time used on mobilization</td>
<td>Vessels pre-packed with tools, PPE and spares</td>
</tr>
<tr>
<td>Average production lost during service</td>
<td>20 MWh/turbine</td>
<td>9 MWh/turbine</td>
<td>No service on high-wind days</td>
</tr>
</tbody>
</table>

1. Mobilization of vessel as well as transport time. Residual is productive time.
Regional hub structure being implemented across portfolio to reap full scale and synergy benefit from clusters

Simple site focus

Hub focus

Example hub benefits

- **Shore-based support organisation consolidated allowing for planning synergies and knowledge sharing**
- **Standardisation of processes/activities and performance optimization across region**

- **Growing cluster capacity allows for investment in better logistics (moving from CTV to SOV\(^1\) based operation)**
- **Reduces time spent on travelling to site and increases access to turbines (improved weather window)**

\(^1\) CTV: Crew Transfer Vessel; SOV: Service Operations Vessel.
More than 40 Minimum Viable Products (MVPs) released by the Ørsted Lab in 2018, including solution correcting yaw misalignments

Situation pre and post solution

Example site:
Turbine alignment (degrees) – pre

- Misalignment per turbine
- Allowable design variation

Turbine alignment (degrees) – post

MVP & solution introduced

1. Smart wind sensors installed replacing wind vanes (at low cost) for high accuracy wind speed and direction data capture

2. Turbine yaw misalignment data captured

3. Data used - in the Ørsted Lab developed HYPE (patented) algorithm - to correct yaw misalignment

4. Additional Service agreement entered into with JV partnerships to implement solution at site

Results achieved

- **Uplift in production**
 - 0.2-0.3% for SGRE fleet equal to ~21m DKK in EBITDA per annum

- **Additional contract revenue**
 - From agreements with JV partnerships

- **Reduced lifetime integrity cost**
 - From reduced loads on the structure and components

1. MVPs are products/solutions developed using agile workstreams.
2. Equal to Ørsted ownership share from production uplift once implemented for SGRE 3.6MW and SGRE 6-8MW portfolio operated by Ørsted.
Ørsted fast to identify, assess and implement 3rd party technology developments and innovations

<table>
<thead>
<tr>
<th>Ex.</th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade inspection</td>
<td>1 day out of operation</td>
<td>18 min. out of operation</td>
</tr>
<tr>
<td>Blade maintenance</td>
<td>1-2 days out of operation</td>
<td>Minimal loss (simultaneous with scheduled service)</td>
</tr>
</tbody>
</table>

Blade inspections now performed via autonomous drones equipped with HD cameras capturing close up blade images.

Blade maintenance via remotely operated robot currently being tested.
OPEX divided into three different cost categories with very different cost drivers

<table>
<thead>
<tr>
<th>Key cost categories</th>
<th>Examples</th>
<th>Drivers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner’s cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Seabed and cable lease</td>
<td>Seabed lease costs</td>
<td>Cost are primarily driven by country specific factors</td>
</tr>
<tr>
<td>- Land lease</td>
<td>2% of revenue or MWh tariff</td>
<td></td>
</tr>
<tr>
<td>- Property damage insurance</td>
<td>No seabed lease cost</td>
<td></td>
</tr>
<tr>
<td>- Decommissioning guarantee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Overhead cost allocation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Logistics</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- Vessels</td>
<td>Vessel rates</td>
<td>Costs are primarily driven by site specific factors such as distance to shore</td>
</tr>
<tr>
<td>- Distance to shore</td>
<td>Distance to site base harbor</td>
<td></td>
</tr>
<tr>
<td>- Accessibility</td>
<td>Distance to other operated wind farms</td>
<td></td>
</tr>
<tr>
<td>- # Turbines</td>
<td>Weather conditions & sailing restrictions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of turbine positions serviced</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operations</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- FTE’s</td>
<td># service/repair hours</td>
<td>Costs are primarily driven by scale and number of positions</td>
</tr>
<tr>
<td>- Spare parts</td>
<td>Salary level in region</td>
<td></td>
</tr>
<tr>
<td>- Jack-up cost</td>
<td>Freq. of spare parts replacement</td>
<td></td>
</tr>
<tr>
<td>- Facility</td>
<td>Spare parts prices</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vessel rates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Component weight and effective lifting height</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Facility setup</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Local environmental requirements</td>
<td></td>
</tr>
</tbody>
</table>

Offshore wind OPEX/MW continues to decrease driven by scale and continuous operational optimization

1. Adjusted to real-2019 the range is 15.6–17.7 DKKm/MW.
2. Adjusted to real-2015 the number is 14.3 DKKm/MW.

Note: Difference between real term 2015 and 2019 assumes 1% yearly inflation

Guidance given at IPO

- **15-17** DKKm/MW for existing operating portfolio
 - Real-2015

Guidance given at CMD 2018

- **~15** DKKm/MW for 3-4MW turbines
 - Real-2019
- **~10** DKKm/MW for 6-8MW turbines
 - Real-2019
World-class offshore wind operations

Leverage market leading scale to implement industry best practices and technologies

Standard Ørsted Operations framework delivering superior operational performance and platform for global growth

World-class offshore wind operations creating value for our partners and shareholders
Morten Hultberg Buchgreitz
Executive Vice President, CEO Customer Solutions

Born 1967
Education: M.Sc., Business Administration and Computer Science, Copenhagen Business School, 1992

2013 – Ørsted A/S
Executive Vice President, Distribution & Customer Solutions

2013 – 2013 Ørsted A/S
Executive Vice President, Energy Markets

2012 – 2013 Ørsted A/S
Acting Deputy CEO, Wind Power

2002 – 2012 Ørsted A/S
Senior Vice President, Group Treasury & Risk Management

1999 – 2002 KPMG
Partner, KPMG Consulting, Financial Services

1995 – 1999 KPMG
Consultant, KPMG Consulting

1987 – 1995 Unibank / Privatbanken,
Various positions in Intl. Division and in Treasury
Customer Solutions is the route-to-market for Ørsted

Customer Solutions ambition
We deliver world-class energy solutions to customers as their natural partner in the green transition

Energy generation...
- Offshore
- Onshore
- Bioenergy

...packaged as products...
- Commodities
- Corporate PPA
- Certificates trading
- Balancing Service
- Solutions
- Green gas
- Portfolio management
- ...

...sold across customer groups
- Small and medium sized enterprises
- Commercials & Industrials
- Wholesale Markets
- Traded Markets

Energy generation…

Energy generation…

Energy generation…

Energy generation…
Commodities: The backbone

Commodity sales is the foundation...

B2B sales volumes¹

<table>
<thead>
<tr>
<th>TWh</th>
<th>Power</th>
<th>Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY2014</td>
<td>41</td>
<td>7</td>
</tr>
<tr>
<td>FY2015</td>
<td>39</td>
<td>6</td>
</tr>
<tr>
<td>FY2016</td>
<td>38</td>
<td>6</td>
</tr>
<tr>
<td>FY2017</td>
<td>43</td>
<td>8</td>
</tr>
<tr>
<td>9M2017</td>
<td>30</td>
<td>6</td>
</tr>
<tr>
<td>9M2018</td>
<td>32</td>
<td>7</td>
</tr>
</tbody>
</table>

FY2014: 41 TWh, Power 7, Gas 35
FY2015: 39 TWh, Power 6, Gas 34
FY2016: 38 TWh, Power 6, Gas 32
FY2017: 43 TWh, Power 8, Gas 35
9M2017: 30 TWh, Power 6, Gas 25
9M2018: 32 TWh, Power 7, Gas 26

+7% growth from FY2016 to FY2017

B2B gross margin

<table>
<thead>
<tr>
<th>DKKm</th>
<th>Gross margin</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY2014</td>
<td>377</td>
</tr>
<tr>
<td>FY2015</td>
<td>434</td>
</tr>
<tr>
<td>FY2016</td>
<td>380</td>
</tr>
<tr>
<td>FY2017</td>
<td>395</td>
</tr>
<tr>
<td>9M2017</td>
<td>279</td>
</tr>
<tr>
<td>9M2018</td>
<td>291</td>
</tr>
</tbody>
</table>

FY2014: 377 DKKm
FY2015: 434 DKKm
FY2016: 380 DKKm
FY2017: 395 DKKm
9M2017: 279 DKKm
9M2018: 291 DKKm

+4% growth from FY2016 to FY2017

FY2014: 377 DKKm
FY2015: 434 DKKm
FY2016: 380 DKKm
FY2017: 395 DKKm
9M2017: 279 DKKm
9M2018: 291 DKKm

Highly competitive market
Point of access to customers
Capabilities enable other products
Corporate PPA: Mitigates Ørsted’s merchant price risk

Different sources of merchant risk

Existing offshore wind portfolio (UK)

<table>
<thead>
<tr>
<th>UK ROC wind farms</th>
<th>E.g. Race Bank¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Exposed to merchant power prices</td>
<td></td>
</tr>
<tr>
<td>• Need to reduce merchant price risk</td>
<td></td>
</tr>
</tbody>
</table>

Existing offshore wind portfolio

<table>
<thead>
<tr>
<th>Wind farms with ending subsidies</th>
<th>E.g. Nysted²</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Exposed to merchant power prices</td>
<td></td>
</tr>
<tr>
<td>• Need to reduce merchant price risk</td>
<td></td>
</tr>
</tbody>
</table>

New build zero subsidy offshore wind farms (DE & NL)

<table>
<thead>
<tr>
<th>Zero subsidy</th>
<th>E.g. Cluster 1³</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Fully exposed to power prices</td>
<td></td>
</tr>
<tr>
<td>• Need to provide revenue certainty to drive forward new build projects</td>
<td></td>
</tr>
</tbody>
</table>

Different markets to mitigate merchant risk

<table>
<thead>
<tr>
<th>Merchant risk can be mitigated through traded markets</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Merchant risk can be mitigated by contracts on the wholesale market</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Merchant risk can be mitigated by corporate PPAs with C&Is</th>
</tr>
</thead>
</table>

Key focus for Customer Solutions to market corporate PPAs to C&Is

1. Race Bank offshore wind farm is an operational wind farm in the UK with a total capacity of 573MW and 50% owned by Ørsted
2. Nysted offshore wind farm has been operational since 2003 and full subsidy expired in 2016 on the DK 166MW and 42.75% owned wind farm
3. Cluster 1 is a development offshore wind farm project in Germany with a total capacity of 900MW
Corporate PPA framework: Fixed price PPAs with C&Is from Ørsted offshore wind farms

<table>
<thead>
<tr>
<th>Fixed price Corporate PPA</th>
<th>Customers</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-term power purchase agreement under a fixed price structure</td>
<td>Sustainability focused</td>
<td>Ørsted</td>
</tr>
<tr>
<td>Customers purchase power from specific offshore wind farm</td>
<td>– Consumer facing companies (e.g. retail, water, telecoms, food manufacturing)</td>
<td>– Long term price certainty for wind farm power production</td>
</tr>
<tr>
<td>Green certificates transferred 100% to customers for sustainability claim</td>
<td>– Commitment to source 100% renewable (e.g. RE100 companies)</td>
<td>– Develops long term customer partnerships</td>
</tr>
<tr>
<td>Ørsted can balance and shape wind output to match customer consumption</td>
<td>– Link to specific wind farms strengthen CSR communication</td>
<td>Customers</td>
</tr>
<tr>
<td></td>
<td>Cost certainty</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– C&Is with high power costs and requirement for long term cost control (e.g. machinery and chemical production)</td>
<td>– Long term certainty on power costs</td>
</tr>
<tr>
<td></td>
<td>– Minimise exposure to future volatility of power prices</td>
<td>– Reduce carbon emissions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Enable sustainable products (green value chain)</td>
</tr>
</tbody>
</table>
Certificates trading – ROCs: OFGEM rewards renewable UK assets with tradeable ROCs

- ~100m ROCs were delivered to OFGEM in 2018
- Renewable assets receive ROCs during the first 20 years of production
- Last ROCs will be issued in 2037 (no new assets entitled to ROCs since 2017)
Certificates trading – ROC Auction: Ørsted tenders ROCs from UK offshore wind portfolio

<table>
<thead>
<tr>
<th>ROC tender</th>
<th>Customers</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual ROC tender selling excess ROCs from wind farms</td>
<td>UK supply companies</td>
<td>Ørsted</td>
</tr>
<tr>
<td>5-7 Billions DKK annual ROC sales</td>
<td>Without sufficient renewable generation, supply companies will have ROC imbalances</td>
<td>– Effectively sells large volumes with a longer tenure</td>
</tr>
<tr>
<td>~13% ROC market share¹</td>
<td>ROC balance can be obtained by purchasing ROCs from renewable generators with surplus</td>
<td>– Achieves competitive prices</td>
</tr>
</tbody>
</table>

Customers

- UK supply companies
- Without sufficient renewable generation, supply companies will have ROC imbalances
- ROC balance can be obtained by purchasing ROCs from renewable generators with surplus
- Potential imbalances are penalized annually by fees payable to OFGEM

Benefits

- Ørsted
 - Effectively sells large volumes with a longer tenure
 - Achieves competitive prices

Customers

- Fulfil their obligations towards OFGEM
- Effectively purchase large volumes with a longer tenure

¹ ~13m of the ~100m ROCs presented to OFGEM in 2018 were from Ørsted
Balancing Service: Balancing is a cost for power generators

- Actual wind generation creates imbalances settled at varying imbalance prices
- Balancing costs (imbalance income from long positions less imbalance costs from short positions) covered by fee
- Value creation through efficient intraday trading\(^1\), power portfolio size and diversification across generation technologies and geographies

1. Intraday trading is trading after the day-ahead auction which takes place at noon the day before delivery
Balancing Service example: Triton Knoll - balances wind farms leveraging our existing setup

Balancing services to Triton Knoll

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 Year contract</td>
</tr>
<tr>
<td>Power route-to-market</td>
</tr>
<tr>
<td>Balances and offtakes wind farm’s production</td>
</tr>
<tr>
<td>⚠️ No long-term power price risk, only balancing risk</td>
</tr>
</tbody>
</table>

Triton Knoll

- 860 MW offshore wind farm to go into operation in 2021
- Owners
 - Innogy 59%
 - J Power 25%
 - Kansai Electric Power 16%
- Innogy will operate the wind farm

Benefits

Ørsted
- Obtains balancing fee less imbalance cost
- Leverages existing systems and processes
- Diversifies own portfolio

Customer
- Cost efficient route-to-market
- Eliminates imbalance risk

UK wind power balancing market
- Total annual UK wind power balancing cost is DKK ~1.0bn\(^1\)
- UK wind power capacity expected to grow 8% CAGR from 21GW in 2018 to 36GW in 2025\(^2\)

1. Total balancing cost calculation: Energy produced from UK wind power last 12 months (54.5 TWh, source: Renewable UK) multiplied by wind power balancing costs (avg. €2-3/MWh, source: The European Wind Association) at EUR/DKK exchange rate of 7.46
2. BNEF
Solutions – peak shaving: Integration of behind the meter technologies reduces grid load

- ~350 German companies have "intensive grid usage" and ~4,500 companies have "atypical grid usage". Both have peak shaving potential, the former a bit higher than the latter.

1. ~350 German companies have "intensive grid usage" and ~4,500 companies have "atypical grid usage". Both have peak shaving potential, the former a bit higher than the latter.

Manufacturer and solution provider share value creation

~5,000 German companies hold peak shaving potential

Reduced grid load
Reduced grid fees
Ancillary services
Income from ancillary services

Partnership
Industrial manufacturer & Ørsted

Peak shaving solution reduces grid load and costs and offers ancillary services from batteries
Solutions — example: Peak shaving solutions for material manufacturer’s German sites

<table>
<thead>
<tr>
<th>Peak shaving at production sites</th>
<th>Customer</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Year peak shaving contract</td>
<td>Material manufacturer</td>
<td>Ørsted</td>
</tr>
<tr>
<td>Solutions consist of</td>
<td></td>
<td>- Obtains share of grid fee reduction</td>
</tr>
<tr>
<td>- Batteries</td>
<td>Germany-based</td>
<td>- Utilises batteries to provide ancillary services to TSO</td>
</tr>
<tr>
<td>- PV systems</td>
<td>Global production facilities</td>
<td></td>
</tr>
<tr>
<td>- Back-up generators</td>
<td>Thousands of FTEs</td>
<td></td>
</tr>
<tr>
<td>Ørsted finances, installs and</td>
<td>Annual revenue of DKK billions</td>
<td>Customer</td>
</tr>
<tr>
<td>operates the assets</td>
<td></td>
<td>- Grid fee reduction</td>
</tr>
<tr>
<td>Reduced grid loads and</td>
<td></td>
<td>- Reduces carbon emissions</td>
</tr>
<tr>
<td>reduced grid fees</td>
<td></td>
<td>- De-risks business by leasing energy assets</td>
</tr>
<tr>
<td>Ancillary services provided to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solutions financials
- IRR range: High single-digit to mid-teens
- Investment range: Mid single-digit to low-double digit DKKm
Green gas: destination fuel in the green transformation

Biomethane\(^1\) growth expectations are high

Expected annual biomethane supply in the EU, BCM\(^2\)

<table>
<thead>
<tr>
<th>Year</th>
<th>Unsorted household waste (BCM)</th>
<th>Industrial waste</th>
<th>Agricultural manure</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key steps in biomethane production process

Different input sources require different process steps:

- Waste sorting
- Anaerobic digestion
- Upgrading
- Renescience
- End to end biogas plant (AD + upgrading)

1. Biomethane is upgraded biogas injected into grid or used in transportation
2. KPMG – Green Biogas for the Future
Green gas example: Kalundborg Bioenergy – an industrial waste biogas plant

Annual figures

- Capacity: 300,000 tonnes of by-products
- Million m3 production of biomethane (~5t households’ consumption)
- Tonnes carbon emission reduction: 17

Customers

- World-leading manufacturer of insulin Novo Nordisk
- World-leading manufacturer of enzymes Novozymes
- Co-owned with operator Bigadan

Benefits

- Ørsted
 - Monetize the value in industrial by-products
 - Delivers significant carbon savings by replacing fossil natural gas

Customers

- Reduce carbon emissions
- Utilise waste streams to produce green energy

Biogas plant financials

- IRR range: High single-digit to low-teens
- CAPEX (AD + upgrading): DKK 200-400m
Ambition to co-create strong, green energy partnerships

Novo Nordisk and Ørsted partners...

- 11 Years of climate partnership
- ↓ Energy consumption reduced >20%
- 50 DKKm annual energy savings
- ⚠️ Accumulated carbon emission reductions of +200,000 tonnes

... for a greener future

- The full power consumption of Novo Nordisk’s Danish production facilities has been covered by renewables since 2011
- Partnership with Novo Nordisk supported Ørsted’s FID on Horns Rev 2
- In 2018, the Kalundborg Bioenergy plant became operational
- By 2020, Novo Nordisk aims to run all global production facilities on green power
Customer Solutions enables Ørsted’s green growth

- Route-to-market for Ørsted’s product portfolio
- Mitigates merchant risk through trading and green energy partnerships with customers
- Drives incremental profits by supporting customers in becoming greener
Marianne Wiinholt
Chief Financial Officer

Born: 1965
Education: MSc in Business Administration and Auditing, Copenhagen Business School. State Authorised Public Accountant

- **2013 – Ørsted A/S**
 CFO
- **2006 – 2013 Ørsted A/S**
 SVP, Group Finance incl. periods as Business Unit CFO at DCS & Energy Markets
- **2004 – 2006 Ørsted A/S**
 VP, Group Finance
- **1997 – 2003 Borealis A/S**
 Various management positions with Finance
- **1987 – 1997 Arthur Andersen**
 Accountant
Follow-up on 2018 EBITDA

Group EBITDA

DKKbn

- Non-recurring items
- Offshore new partnerships
- Guidance range
- Existing activities
- Hornsea 1 farm-down

<table>
<thead>
<tr>
<th>Year</th>
<th>Existing activities</th>
<th>Offshore new partnerships</th>
<th>Guidance range</th>
<th>Non-recurring items</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>9.4</td>
<td>5.0</td>
<td>4.7</td>
<td>1.1</td>
</tr>
<tr>
<td>2017</td>
<td>12.7</td>
<td>9.8</td>
<td>22.5</td>
<td>0.5</td>
</tr>
<tr>
<td>2018</td>
<td>13.12</td>
<td>14.7</td>
<td>14.5 - 15.3</td>
<td>1.1</td>
</tr>
<tr>
<td>2018 incl. new offshore partnerships</td>
<td>~27.5-29.3</td>
<td>14.5-15.3</td>
<td>14.5-15.3</td>
<td></td>
</tr>
</tbody>
</table>

1. Based on expectation to recognise roughly 85% of expected profit of DKK 17-18bn from Hornsea 1 farm-down.
Follow-up on business unit EBITDA and gross investments for 2018

Business unit directional EBITDA guidance
FY2018 vs. FY2017

<table>
<thead>
<tr>
<th>Offshore</th>
<th>Bioenergy</th>
<th>Customer Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher</td>
<td>Higher</td>
<td>In line</td>
</tr>
</tbody>
</table>

Full year EBITDA 2017

- DKK 10.8bn\(^1\)
- DKK 0.2bn
- DKK 2.1bn

Gross investments 2018 guidance

- 23-25\(\text{DKKbn}\)
- incl. Lincoln Clean Energy and Deepwater Wind acquisitions

1. Excluding new partnership agreements (Borkum Riffgrund 2 and Walney Extension)
Offshore financials

Sites generation capacity

GW

<table>
<thead>
<tr>
<th>Year</th>
<th>2017</th>
<th>2018E</th>
<th>2019E</th>
</tr>
</thead>
<tbody>
<tr>
<td>GW</td>
<td>2.5</td>
<td>3.0</td>
<td>3.6</td>
</tr>
</tbody>
</table>

- Earnings from operating wind farms expected to increase driven by ramp-up in generation from:
 - Race Bank, Walney Extension and Borkum Riffgrund 2 commissioned in 2018
 - Hornsea 1 commissioned in 2019
 - Increase of 44% in generation capacity from 2017 to 2019

Construction agreements and divestment gains

EBITDA, DKKbn

<table>
<thead>
<tr>
<th>Year</th>
<th>2017</th>
<th>2018E</th>
<th>2019E</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.7</td>
<td>9.8</td>
<td>14.5-15.3</td>
<td></td>
</tr>
<tr>
<td>3.9</td>
<td></td>
<td>2.6-2.7</td>
<td></td>
</tr>
</tbody>
</table>

- Expected profit from Hornsea 1 amounts to DKK 17-18bn of which 85% will be included in 2018 and the remaining 15% in 2019
- Currently no further farm-downs in Europe expected
- Potential for future farm-downs in Taiwan

Project development and other

EBITDA, DKKbn

<table>
<thead>
<tr>
<th>Year</th>
<th>2017</th>
<th>2018E</th>
<th>2019-2022E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6</td>
<td></td>
<td>~1.8</td>
<td></td>
</tr>
<tr>
<td>-1.6</td>
<td></td>
<td>-~0.6</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td></td>
<td>-2.4</td>
<td></td>
</tr>
</tbody>
</table>

- Expected increased project development costs from 2017 to 2019. Thereafter, stable level expected
- Increase reflects higher level of activities related to market entry in new countries, regimes where FID is taken late in project lifetime and increased build-out ambitions
- All IRRs presented are lifecycle incl. project development costs
Update on Offshore CAPEX guidance

CAPEX cost development excluding transmission asset costs

<table>
<thead>
<tr>
<th></th>
<th>Real 2015</th>
<th>Yearly Change</th>
<th>Real 2019</th>
<th>Yearly Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guidance at IPO</td>
<td>22-24</td>
<td></td>
<td>22.9-25.0</td>
<td></td>
</tr>
<tr>
<td>Updated guidance at FY2017</td>
<td>20</td>
<td></td>
<td>20.8</td>
<td></td>
</tr>
<tr>
<td>Guidance at CMD 2018</td>
<td>13.0</td>
<td></td>
<td>13.5</td>
<td></td>
</tr>
</tbody>
</table>

Average CAPEX/MW for the FID’ed build-out portfolio at IPO

1. Capacity weighted
2. Gode Wind 1&2, Burbo Bank Extension, Race Bank, Walney Extension, Borkum Riffgrund 2 and Hornsea 1

Note: Difference between real term 2015 and 2019 assumes 1% yearly inflation

Updated guidance on FID’ed build-out portfolio at IPO. CAPEX/MW lowered as projects have been substantially matured, increasing visibility on CAPEX.

Significantly lower than IPO portfolio driven by Ørsted’s continuous efforts to reduce costs through maturation of the supply chain incl. larger turbines, foundation updates, cable optimisation and reduction in installation time.

Guidance on Borssele 1&2, Hornsea 2, Gode Wind 3&4 and Cluster 1.
Significant higher CAPEX for the Changhua 1&2a project in Taiwan

CAPEX per MW for the Changhua 1&2a project is expected to be approx. twice as high as the CAPEX multiple of European projects under construction and development.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Comment</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design revisions</td>
<td>- Adaptation of key components
• Turbines enhanced to withstand typhoons
• Piled-jacket foundations to withstand typhoons, earthquakes and poor soil conditions</td>
<td>High</td>
</tr>
<tr>
<td>Developing supply chain</td>
<td>- Localisation commitments (e.g. foundations, onshore transmission, towers, etc)
- Added costs to suppliers, e.g. as part of their efforts to upgrade production facilities and finance new built vessels
- Upgrade of harbour facilities</td>
<td>High</td>
</tr>
<tr>
<td>Transmission</td>
<td>- Full-scope projects including on- & offshore transmission asset
- Costs related to build out of national grid infrastructure</td>
<td>High</td>
</tr>
<tr>
<td>Installation</td>
<td>- Longer installation campaign to accommodate delivery of local supply and adverse weather conditions during winter</td>
<td>Medium</td>
</tr>
<tr>
<td>Transport</td>
<td>- Transportation of key components from Europe and APAC</td>
<td>Low</td>
</tr>
</tbody>
</table>
Offshore wind OPEX/MW continues to decrease driven by scale

Average lifetime OPEX/MW guidance

<table>
<thead>
<tr>
<th>Size (MW)</th>
<th>OPEX/MW Guidance at IPO</th>
<th>OPEX/MW Guidance at CMD 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-4MW</td>
<td>Real 2019: 15.6-17.7</td>
<td>Real 2019: 15</td>
</tr>
<tr>
<td>6-8MW</td>
<td>Real 2019: 14.3</td>
<td>Real 2019: 10</td>
</tr>
</tbody>
</table>

On a portfolio level the OPEX/MW profile is expected to decrease 2% annually in real terms over the operational lifetime.

Note: Difference between real term 2015 and 2019 assumes 1% yearly inflation.
Strong load factors across Offshore portfolio

Load factors
Capacity weighted average

<table>
<thead>
<tr>
<th></th>
<th>FY 2017</th>
<th>IPO portfolio at IPO</th>
<th>Updated portfolio at CMD 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>44%</td>
<td>48-50%</td>
<td>48-50%</td>
<td></td>
</tr>
</tbody>
</table>

IPO portfolio marked a step-up in load factor
- Load factor of 48-50%
- Burbo Bank Extension as a negative outlier with lower than average expected load factor

Updated portfolio with equivalent load factor
- IPO portfolio with addition of Borssele 1&2, Hornsea 2, German Cluster 1 and Gode Wind 3&4
- Load factor of 48-50% reiterated for the extended portfolio of assets
- Hornsea 1&2 are positive outliers with higher than average expected load factors
- German Cluster 1 is a negative outlier with lower than average expected load factor. Despite high wind speeds the turbine density will have adverse effect on load factor

1. Gode Wind 1&2, Burbo Bank Extension, Race Bank, Walney Extension, Borkum Riffgrund 2 and Hornsea 1
2. Updated portfolio include: IPO portfolio, Borssele 1&2, Hornsea 2, Gode Wind 3&4 and Cluster 1
High visibility on future earnings

Offshore wind farms – Average subsidy/PPA lifetime

Ørsted ownership, GW

- In operation
- Under construction
- Awarded

Key metrics

~15 years
Average subsidy lifetime
Projects in operation, under construction and awarded

~90%
Group regulated and contracted EBITDA average 2019-2025
Increased from 80-90 percent

1. Based on EBITDA excluding project development cost. Market exposed includes activities related to the portion of wind power generation that is sold at market price and gas & power purchases and sale. Contracted comprises farm-downs from Offshore partnerships and construction agreements, long-term O&M agreements, PPAs and fixed price hedges, long-term ancillary service contracts and income from Renescience project. Regulated comprises subsidised income from wind farms (Production Tax Credits and Tax incentives in the US), income from regulated Power Distribution and Oil Pipe, and income from heat generation under long-term contracts with regulated heat prices.
Onshore Wind key metrics

Operational portfolio – 813MW

-45% Average historical load factor

<1.5 USD/m/MW CAPEX multiples lower than BNEF 2017 benchmarks

22 USD/m/MWh Avg. nominal offtake pricing for operational portfolio1

1Weighted average including escalation for PPA lifetime
Onshore Wind key metrics

Near-term portfolio – 714MW

$\sim 47\%$ Expected average load factor\(^1\)

<1.2 USD/m$/MW$ CAPEX multiples lower than BNEF 2019 benchmarks

12-15 USD/MWh Avg. nominal offtake pricing for development portfolio\(^2\)

1. Weighted average expected load factor
2. Weighted average including escalation for PPA lifetime
Onshore wind farm including tax equity partner

Cash flow profile - Illustrative

1. Example assumes a pay go structure. Depending on the project optimisation, a structure where everything is paid upfront is also common. In the this structure there is no risking of PTCs production, and therefore no pay go's.
Onshore Wind – Acquisition, EBITDA and Operating cash flow

Lincoln Clean Energy

Deal financials

- Acquired 100% of equity placing an enterprise value on LCE at USD 580 million

- Tax equity end of year estimate amounts to USD 600 million, split between:
 - USD 550 million as NWC
 - USD 50 million as NIBD

EBITDA full consolidation

Illustrative 2019

Operating cash flow

Illustrative 2019

EBITDA

Derivative run off\(^1\)

Sale of power (mainly PPA price)

PTCs

Tax incentives

Fixed costs & Project development

1. The power purchase agreements (PPAs) for Dermott, Willow Springs Tahoka and to some extent Plum Creek, which were entered into at closing of the LCE acquisition, are considered cancelled under IFRS 3, which results in the power being recognised at the market/spot price rather than the price in the PPAs
Bioenergy expected to quadruple EBITDA from 2017 to 2020

Bioenergy EBITDA

<table>
<thead>
<tr>
<th></th>
<th>DKKbn</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>0.15</td>
</tr>
<tr>
<td>2020E</td>
<td>~0.60</td>
</tr>
</tbody>
</table>

4x increase in EBITDA from 2017 to 2020.

Directional 2020 EBITDA guidance

Heat & Power – Higher
- Recovery in power prices and spreads over the medium-term
- Bioconversions of CHP plants increase EBITDA driven by long-term heat contracts

Ancillary services – Stable
- Stable EBITDA supported by mid-term manual reserve contract with Energinet until the end of 2020
- Hereafter, the Daily Capacity Auction market is expected to replace the Kyndby agreement for manual reserves in DK2
Structural change to Customer Solutions portfolio

Strategic divestments
Power distribution and residential businesses

Divestments agreed ahead of IPO
Oil and gas pipeline infrastructure

Ongoing business
Enabling Ørsted through market access
1. Adjusted for Power distribution (1,164m), Oil pipe (39m), Gas distribution (-3m), Residential Business (68m), City Light (40m), Oil pipe system (39m), Gas pipe system (248m) and adjustments to provision in LNG (-389m) and Markets (-77m).

2. Provision only covers earnings gap related to capacity without long-term sourcing contracts.

Customer Solutions financials

Customer Solutions EBITDA

<table>
<thead>
<tr>
<th></th>
<th>2017</th>
<th>2017 ongoing business¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales</td>
<td>2.1</td>
<td>-0.1</td>
</tr>
<tr>
<td>Markets</td>
<td>1.4</td>
<td>1.0</td>
</tr>
<tr>
<td>Distribution</td>
<td>1.2</td>
<td>1.3</td>
</tr>
<tr>
<td>LNG</td>
<td>-0.6</td>
<td>-0.2</td>
</tr>
</tbody>
</table>

Mid-term EBITDA expected to be significantly lower

Compared to adjusted 2017

Markets - Significantly lower
- In 2017 Markets was positively affected by high portfolio and trading gains
- From 2018 negative effect from lower volumes managed following the 2017 divestment of O&G
- Volatile gas prices will continue to impact Markets through valuation of gas storage and gas storage hedges
- Partly offset by higher power volumes from our offshore wind farms

B2B - Higher
- Earnings from B2B commodity and solutions sales expected to turn positive following business development initiatives

LNG - Stable
- LNG is expected to stabilise at the 2017 adjusted level going forward
- Continued loss making as earnings from regasification and optimisation of volumes cannot cover capacity payments at the Gate terminal²

¹. Adjusted for Power distribution (1,164m), Oil pipe (39m), Gas distribution (-3m), Residential Business (68m), City Light (40m), Oil pipe system (39m), Gas pipe system (248m) and adjustments to provision in LNG (-389m) and Markets (-77m)
². Provision only covers earnings gap related to capacity without long-term sourcing contracts
Our project companies in the UK are required to divest their offshore transmission assets to an OFTO within 18 months from the approximate date on which power is first generated from the asset. At 9M 2018, the balance primarily included Race Bank, Walney Extension and Hornsea 1, which we expect to divest in Q1 2019, Q4 2019 and Q1 2021, respectively.

Work-in-progress
- We tie up significant funds in offshore transmission assets in the UK. The duration of the construction period until divestment is up to 3-4 years
- Construction of offshore wind farms for partners tends to balance over the years (although with fluctuations) as we receive milestone payments from the partners

Trade payables related to capital expenditure (CAPEX payable)
- These payables form part of our cash flow from investments and will fluctuate with the investment activities

Other items
- Standard NWC items such as trade receivables, trade payables, inventories and VAT will fluctuate with the seasons
- Prepayments from heat customers build up during the construction period of our biomass conversions
- Prepayments of approx. DKK 2bn related to grid connection charges in the Power Distribution business will expectedly be divested in 2019

Tax equity
Tax equity partners’ upfront payment (and Pay gos) related to PTCs and tax incentives will be included in NWC during Q4 2018

1. Our project companies in the UK are required to divest their offshore transmission assets to an OFTO within 18 months from the approximate date on which power is first generated from the asset. At 9M 2018, the balance primarily included Race Bank, Walney Extension and Hornsea 1, which we expect to divest in Q1 2019, Q4 2019 and Q1 2021, respectively.
Ørsted leverage compared to project finance

Lower risk and higher parent rating enables benefits for Ørsted through

- Lower return requirement
- Lower direct costs
- Flexibility
- Business

- Lower company risk profile
- Lower credit spreads on debt (discount of 100-120bps)
- Lower structuring and bank fees
- Scale in financing activities
- Simple and transparent debt structure
- No covenants or pledge of assets
- No restrictions on construction and operation
- Markets for senior bonds more stable
- Easy access to capital in new markets
- Long-term contracts, e.g. construction agreements, O&M and CPPAs

Typical first year stand-alone project finance leverage level (BBB-) | Avg. project finance lifecycle leverage | Continued growth investments increasing market value | Remaining leverage difference between Ørsted financing and project financing | Ørsted leverage¹ in early 2020 based on market capitalisation (BBB+)

~70% | ~25%
Key drivers of long-term wind capture power prices

<table>
<thead>
<tr>
<th>Comment</th>
<th>Correlation</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas, coal and CO2 prices are key when forecasting long-term wind capture prices</td>
<td>Positive</td>
<td></td>
</tr>
<tr>
<td>Phase-out of baseload power plants (nuclear, lignite, coal) would increase wind capture prices. Final effect depends on what replaces it as more renewable decrease wind capture prices</td>
<td>Positive</td>
<td></td>
</tr>
<tr>
<td>Build-out of wind and solar power would decrease wind capture prices</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>Increasing power demand would increase wind capture prices — and even more so if demand can be shifted in time, e.g. electric vehicles</td>
<td>Positive</td>
<td></td>
</tr>
<tr>
<td>Increasing the interconnector capacity between price zones with respectively high and low wind capture prices will decrease wind capture prices in the high price zone and increase in the low price zone</td>
<td>Positive/Negative</td>
<td></td>
</tr>
<tr>
<td>Increasing amounts of electricity storage would increase wind capture prices</td>
<td>Positive</td>
<td></td>
</tr>
</tbody>
</table>
Fossil fuel expected to be price setting in 80-90% of hours in 2040

Power generation mix for UK and DE

<table>
<thead>
<tr>
<th></th>
<th>UK</th>
<th>DE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear</td>
<td>21</td>
<td>44</td>
</tr>
<tr>
<td>Renewables</td>
<td>29</td>
<td>32</td>
</tr>
<tr>
<td>2017¹</td>
<td>50</td>
<td>44</td>
</tr>
<tr>
<td>2040²</td>
<td>63</td>
<td>79</td>
</tr>
</tbody>
</table>

Prices above 10 EUR/MWh in UK and DE

<table>
<thead>
<tr>
<th></th>
<th>UK</th>
<th>DE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear</td>
<td>100</td>
<td>95</td>
</tr>
<tr>
<td>Renewables</td>
<td>88</td>
<td>81</td>
</tr>
<tr>
<td>2017¹</td>
<td>52</td>
<td>30</td>
</tr>
<tr>
<td>2040²</td>
<td>88</td>
<td>81</td>
</tr>
</tbody>
</table>

2. Source: 2040 numbers. © 2018 IHS Markit. All rights reserved. The use of this content was authorized in advance. Any further use or redistribution of this content is strictly prohibited without prior written permission by IHS Markit.
Key metrics, financial targets and policies

Financial targets

<table>
<thead>
<tr>
<th>Metric</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total CAPEX spend, 2019-2025</td>
<td>DKK 200bn</td>
</tr>
<tr>
<td>CAPEX allocation split, 2019-2025</td>
<td></td>
</tr>
<tr>
<td>Offshore</td>
<td>75-85%</td>
</tr>
<tr>
<td>Onshore</td>
<td>15-20%</td>
</tr>
<tr>
<td>Bioenergy + Customer Solutions</td>
<td>0-5%</td>
</tr>
<tr>
<td>Unlevered lifecycle IRR from competitive offshore wind tenders¹</td>
<td>7.5-8.5%</td>
</tr>
<tr>
<td>Average share of EBITDA from regulated and contracted activities, 2019-2025</td>
<td>90%</td>
</tr>
<tr>
<td>Average ROCE, 2019-2025</td>
<td>~10%</td>
</tr>
<tr>
<td>Average yearly growth in EBITDA from offshore and onshore wind farms in operation, 2017-2023</td>
<td>~20%</td>
</tr>
<tr>
<td>Green share of generation, 2025</td>
<td>99%</td>
</tr>
</tbody>
</table>

Financial policies

<table>
<thead>
<tr>
<th>Policy</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporate rating</td>
<td>Baa1/BBB+/BBB+ (Moody’s/S&P/Fitch)</td>
</tr>
<tr>
<td>Dividend policy</td>
<td>Ambition to increase the dividend paid by a high single-digit rate compared to the dividends for the previous year up until 2025</td>
</tr>
</tbody>
</table>
Leverage industry leading market positions and capabilities in green energy and balance sheet capacity.

Invest DKK 200bn in value creating, global growth towards 2025 with a strong emphasis on wind energy.

Grow dividend by high single digit annually and maintain financial strength and credit ratings.

Deliver long-term return on capital employed of ~10%.

Drive annual operating profit growth of ~20% between 2017 and 2023.

Maintain share of contracted and regulated revenues around 90% providing significant financial visibility and predictability.

Combines into a compelling value creation formula which we believe to be among the very best in the industry.

By 2030, Ørsted will remain a growing and value creating, global powerhouse in green energy with more than 30 GW of installed renewables capacity...

...and our production will be emission free.
Appendix
Onshore wind farm including tax equity partner

Accounting treatment for new wind farms – Illustrative, excl. derivatives run-off

<table>
<thead>
<tr>
<th>Impact on accounts</th>
<th>Y0</th>
<th>Y1 ...</th>
<th>Y11+12</th>
<th>Y13</th>
<th>Accounting considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ørsted cash ownership</td>
<td>70%</td>
<td>70%</td>
<td>100%</td>
<td>100%</td>
<td>Revenue from years 1-12 reflects presence of long-term, fixed price offtake arrangements, which are required to secure tax equity investments and efficiently monetise PTCs</td>
</tr>
<tr>
<td>Ørsted tax ownership</td>
<td>1%</td>
<td>1%</td>
<td>100%</td>
<td>100%</td>
<td>Partner’s share of PTCs and tax benefits fully consolidated into EBITDA</td>
</tr>
<tr>
<td>Revenue (full consolidation)</td>
<td>+100</td>
<td>+100</td>
<td>+300</td>
<td></td>
<td>Tax equity partner upfront payment related to PTCs and tax incentives included in NWC and amounts on average to 80% of CAPEX</td>
</tr>
<tr>
<td>OPEX (full consolidation)</td>
<td>-75</td>
<td>-75</td>
<td>-75</td>
<td></td>
<td>Deferred contributions (Pay go) represent the delta between actual PTCs generated and PTCs monetized upfront. Pay go is calculated as delta between actual and risked (approximately 80%) production</td>
</tr>
<tr>
<td>Other operating income</td>
<td>+250</td>
<td>-</td>
<td>-</td>
<td></td>
<td>Tax equity partner receives PTCs, tax incentives and a small share of operating earnings to achieve an agreed upon return after which the partner exits the project. Partner receives part of operational earnings as cash contributions</td>
</tr>
<tr>
<td>Partner’s share of PTCs and Pay go</td>
<td>+200</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partner’s share of tax incentives</td>
<td>+50</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBITDA (full consolidation)</td>
<td>+275</td>
<td>+25</td>
<td>+225</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interest on tax equity</td>
<td>-5</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tax</td>
<td>-</td>
<td>-5</td>
<td>-47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NWC</td>
<td>+1.525</td>
<td>-230</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upfront payment</td>
<td>+1.525</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pay go</td>
<td></td>
<td>+20</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTCs and tax incentives (added-back)</td>
<td>-250</td>
<td></td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating cash flow</td>
<td>+1.525</td>
<td>+40</td>
<td>+20</td>
<td>+178</td>
<td></td>
</tr>
<tr>
<td>CAPEX</td>
<td>-2.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free cash flow</td>
<td>-475</td>
<td>+40</td>
<td>+20</td>
<td>+178</td>
<td></td>
</tr>
<tr>
<td>Financing cash flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cash distribution from and to equity partner</td>
<td>+75</td>
<td>-10</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Structural change to Customer Solutions portfolio

Strategic divestments
- Power distribution and residential business

- **Power Distribution**
 - 2017 EBITDA DKK 1.2bn
 - 2017 RAB DKK 10.6bn
 - Expected 2020 RAB DKK 13.7bn
 - The leading regulated power DSO serving c. 1 million connections in and around Copenhagen

- **Sales, B2C**
 - 2017 EBITDA DKK <0.1bn
 - Denmark’s largest power and gas sales company with 733,000 power connections and 91,000 gas connections
 - Operates mainly in Northern Zealand

- **City Light**
 - 2017 EBITDA DKK <0.1bn
 - Operates and services c. 157,000 street lights across 17 municipalities
 - Operates in Northern Zealand

Regulatory divestments
- Oil and gas pipeline infrastructure

- **Oil pipe system**
 - 2017 EBITDA DKK <0.1bn
 - Oil pipeline with a total length of 330 kilometers

- **Gas pipe system**
 - 2017 EBITDA DKK 0.2bn
 - More than 600 kilometers pipeline